The bond between the N and 0 (double bond) transfers and gives a -ve charge on O and a +ve charge on N atom at the group . Thus the +vely charged nitrogen is electron-deficient pulling electrons towards itself!
The combination of the +vely charged nitrogen and the electronegative oxygen atom leads to delocalization causing the resonance effect.
Answer:
pH = 2.66
Explanation:
- Acetic Acid + NaOH → Sodium Acetate + H₂O
First we <u>calculate the number of moles of each reactant</u>, using the <em>given volumes and concentrations</em>:
- 0.75 M Acetic acid * 50.0 mL = 37.5 mmol acetic acid
- 1.0 M NaOH * 10.0 mL = 10 mmol NaOH
We<u> calculate how many acetic acid moles remain after the reaction</u>:
- 37.5 mmol - 10 mmol = 27.5 mmol acetic acid
We now <u>calculate the molar concentration of acetic acid after the reaction</u>:
27.5 mmol / (50.0 mL + 10.0 mL) = 0.458 M
Then we <u>calculate [H⁺]</u>, using the<em> following formula for weak acid solutions</em>:
- [H⁺] =

Finally we <u>calculate the pH</u>:
Answer:
0.55mL of carbon tetrachloride
Explanation:
CH4(g) + 2Cl2(g) -------> CCl4(g) + 2H2(g)
From the balanced reaction equation
44800mL of chlorine produces 22400 ml of carbon tetrachloride
If 1.1mL of chlorine were consumed, volume of carbon tetrachloride= 1.1×22400/44800
=0.55mL of carbon tetrachloride
Note: 1 mole of a gas occupies 22.4L volume or 22400mL
<h3><u>Answer;</u></h3>
It makes the reaction harder to start
<h3><u>Explanation</u>;</h3>
- <em><u>Activation energy is minimum amount of energy that is required for a reaction to start. Activation energy determines the rate of a chemical reaction such that the higher the activation energy, the lower the rate of chemical reaction and vice versa.</u></em>
- The source of activation energy needed to push chemical reactions forward is obtained from the surroundings. Catalyst speed up chemical reaction by lowering the activation energy. Therefore, catalysis is the increase in the rate of a chemical reaction by lowering its activation energy.
Explanation:
We are given: entropy of Fe2O3 = 90J/K.mol
: entropy of C = 5.7J/K.mol
: entropy of Fe = 27.2J/K.mol
: entropy of CO = 198J/K.mol

Answer:
The correct answer is C.