Answer- I don’t know sorry
So domain is the number you can use
range is the output your get from inputting the domain given
so from 2≤x≤5
since it is linear, we can be sure that we only need to test the endpoints of the domain to find the endpoints of the range
sub 2 for x
y=2(2)+1
y=4+1
y=5
sub 5 for x
y=2(5)+1
y=10+1
y=11
so range is from 5 to 11
in interval notation: [5,11]
in other notation 5≤y≤11
or
R={y|5≤y≤11}
Answer:
E
Step-by-step explanation:
let a, b, c represent the number of students in 6th, 7th, 8th grade
ratio of students : teachers = 28 : 1
There are 82 teachers , so 28 × 82 = 2296 students
Then
a + b + c = 2296 , that is
828 + b + c = 2296 ( subtract 828 from both sides )
b + c = 1468 → E
The resultant graph is shown in the attached image.
Explanation:Before we begin, remember that when we multiply by a negative sign, we flip the sign of the inequality
The given inequality is:
-y ≤ 3x - 5
We will multiply both sides by -1 to get a positive y vale. This will give us:
y ≥ -3x + 5
Now, to graph the inequality, we will first draw the line y = -3x + 5 and then shade the region having y values greater than the line.
To know the region, you will simply use trial and error method for random points on the two sides of the line.
The final solution would be as shown in that attachment.
Hope this helps :)
You have to make a cos graph that starts its minimum and of -2, has an amplitude of 10, a period of 10 and a maximum of 18.
I decided to use a cos graph since cos graphs start at their minimum or maximum unlike a sine graph that starts halfway between the minimum and maximum. You also know the amplitude has to be 10 since 18+2=20 and 20/2=10. We were also told that the water wheel completels a rotation every 10 minutes which means the period is 10 minutes.
lets start of with a regular cos(x) graph. This starts on its maximum instead of minimum so we have to multiply it by -1 to get -cos(x) which does start on its minimum.
-cos(x) has an amplitude of 1 instead of 10, to fix that we multiply it by 10 to get -10cos(x) which has an amplitude of 10.
-10cos(x) has a period of 2π instead of 10, to fix this we multiply the x by 2π/10 to get -10cos((π/5)x) which now has a period of 10.
-10cos((π/5)x) has a minimum of -10 and maximum of 10 instead of a minimum of -2 and maximum of 18, to fix this we add 8 to -10cos((π/5)x) to get -10cos((π/5)x)+8 which does have a minimum of -2 and maximum of 18.
Therefore the answer is y=-10cos((π/5)x)+8. x being time in minutes and and y being the height in feet.
I hope this helps. Let me know if anything is unclear.