You are attracting electricity<span />
Answer:

Explanation:
According to Coulomb's law, the magnitude of the electric force between two point charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

Here k is the Coulomb constant. In this case, we have
,
and
. Replacing the values:

The negative sign indicates that it is an attractive force. So, the magnitude of the electric force is:

the friction forces are smaller than the forward force
Answer:
How much electricity the appliance can hold, the number of hours the appliance is used in a day, and how many days it is used of the year.
Explanation:
Once we find all these things its simple math to figure out how many watts the appliance uses.
A proton is released from rest at the origin in a uniform electric field in the positive x direction with magnitude 850 N/C. The change in the electric potential energy of the proton-field system when the proton travels to x = 2.50m is -3.40 × 10⁻¹⁶ J (Option B)
<h3 /><h3>
How is the change in electric potential energy of the proton-field system calculated?</h3>
- Work done on the proton =Negative of the change in the electric potential energy of the proton field
- In the given case, W = -qΔV
- -W = qΔV
- = qEcosθ
- Therefore, work done on the proton = -e(8.50×
N/C)(2.5m)(1) - = -3.40×
J - Any change in the potential energy indicates the work done by the proton.
- Therefore the positive sign shows that the potential energy increases when the proton does the work.
- The negative sign shows that the potential energy decreases when the proton does the work.
To learn more about electric potential energy, refer
brainly.com/question/14306881
#SPJ4