Answer:
The volume of the submerged part of her body is
Explanation:
Let's define the buoyant force acting on a submerged object.
In a submerged object acts a buoyant force which can be calculated as :
ρ.V.g
Where ''B'' is the buoyant force
Where ''ρ'' is the density of the fluid
Where ''V'' is the submerged volume of the object
Where ''g'' is the acceleration due to gravity
Because the girl is floating we can state that the weight of the girl is equal to the buoyant force.
We can write :
(I)
Where ''W'' is weight
⇒ If we consider ρ = (water density) and and replacing this values in the equation (I) ⇒
ρ.V.g = 610N
(II)
The force unit ''N'' (Newton) is defined as
Using this in the equation (II) :
We find that the volume of the submerged part of her body is
Answer:
The magnitude of the induced electric field at a point 2.5 cm from the axis of the solenoid is 8.8 x 10⁻⁵ V/m
Explanation:
given information:
radius, r = 2.0 cm
N = 700 turns/m
decreasing rate, dI/dt = 9.0 A/s
the magnitude of the induced electric field at a point 2.5 cm (r = 2.5 cm = 0.025 m) from the axis of the solenoid?
the magnetic field at the center of solenoid
B = μ₀nI
where
B = magnetic field (T)
μ₀ = permeability (1.26× 10⁻⁶ T.m/A)
n = the number turn per unit length (turn/m)
I = current (A)
dB/dt = μ₀n dI/dt (1)
now we calculate the induced electric field by using
E =
= 2E/r (2)
where
E = the induced electric field (V/m)
we substitute the firs and second equation, thus
dB/dt = μ₀n dI/dt
2E/r = μ₀n dI/dt
E = (1/2) r μ₀n dI/dt
= (1/2) (0.025) (1.26× 10⁻⁶) (700) (8)
= 8.8 x 10⁻⁵ V/m
Answer:
A)
B)
Explanation:
Given:
- temperature of air,
- temperature of lungs,
- specific Heat exchanged from the lungs ,
- specific heat of air,
- mass of 1 L air,
- breath rate,
A)
Now,
amount of heat needed to warm the air of lungs to the body temperature:
B)
Amount of heat lost per hour:
<u>No. of breaths per hour:</u>
<u>Now the total loss of energy in 1 hr.:</u>