The viscous force on an object moving through air is proportional to its velocity.
The only forces acting on an object when falling are air resistance and its weight itself. The weight acts vertically downwards whereas air resistance acts vertically upward.
Let F be the viscous force due to air molecules, B be buoyant force due to air and W be the weight of falling object. Initially, the velocity of falling object and hence the viscous force F is zero and the object is accelerated due to force
(W-B). Because of the acceleration the velocity increases and accordingly the viscous force also increases. At a certain instant, the viscous force becomes equal to W-B. The net force then becomes zero and the object falls with constant velocity. This constant velocity is called terminal velocity.
Thus at terminal velocity, air resistance and force of gravity becomes equal.
Answer:
Option 5. 1 and 3
Solution:
The only forces acting on the tennis ball after it has left contact with the racquet and the instant before it touches the ground are the force of gravity in the downward direction and the force by the air exerted on the ball.
The ball after it left follows the path of trajectory and as it moves forward in the horizontal direction the force of the air acts on it.
In the whole projectile motion of the ball, the acceleration due to gravity acts on the ball thus the force of gravity acts on the ball in the downward direction before it hits the ground.
Answer:
Part a)

Part b)

Part c)


Explanation:
Part a)
As we know that frequency = 1 MHz
speed of electromagnetic wave is same as speed of light
So the wavelength is given as



Part b)
As we know the relation between electric field and magnetic field



Part c)
Intensity of wave is given as



Pressure is defined as ratio of intensity and speed


Explanation:
Average speed = distance / time
|v| = (7 km + 2 km) / (2 hr + 1 hr)
|v| = 3 km/hr
Average velocity = displacement / time
v = (7 km east + 2 km east) / (2 hr + 1 hr)
v = 3 km/hr east