I believe the answer is 4 because solid are more compacted than liquid and gases and don't move around like liquid or gases. I'm pretty sure they have strong intermolecular forces because of how close they are. The only answer that makes sense is 4.
Pressure on the inside of the balloon was greater than the pressure on the outside of the balloon so it pushed out until the pressures equalized.
Answer:
1. ¹⁰₄Be ---> ¹⁰₅B + ⁰₋₁β
2. ³⁴₁₄Be ---> ³⁴₁₅P + ⁰₋₁β
3. ¹⁹²₇₈Pt -----> ¹⁹⁰₇₆Os + ⁴₂α
4. ²⁸₁₂Mg ---> ²⁸₁₃Al + ⁰₋₁β
Explanation:
1. In the first equation, Beryllium-10 isotope undergoes beta-decay, emitting a beta-particle to form boron-10 isotope. The balanced nuclear equation is given below:
¹⁰₄Be ---> ¹⁰₅B + ⁰₋₁β
2. In this reaction, silicon-34 isotope undergoes beta-decay, emitting a beta-particle to form phosphorus-34 isotope. The balanced nuclear equation is given below:
³⁴₁₄Be ---> ³⁴₁₅P + ⁰₋₁β
3. In this equation, platinum-192 isotope undergoes alpha-particle decay emitting an alpha-particle to form osmium-190 isotope. The balanced nuclear equation is given below:
¹⁹²₇₈Pt -----> ¹⁹⁰₇₆Os + ⁴₂α
4. In this equation, magnesium-28 isotope undergoes beta-decay, emitting a beta-particle to form aluminum-28 isotope. The balanced nuclear equation is given below:
²⁸₁₂Mg ---> ²⁸₁₃Al + ⁰₋₁β
The periodic table contains the pure substances
<span>Elastic to mechanical is the energy conversion that occurs. Elastic, the pulling back and stretching of the rubber band, mechanical is the release!</span>