Answer:
The
expression for the weak base equilibrium is:
![K_b=\frac{[(CH_3)_3NH^+][OH^-]}{[(CH_3)_3N]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5B%28CH_3%29_3NH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5B%28CH_3%29_3N%5D%7D)
Explanation:

The expression of the equilibrium constant of base
can be given as:
![K_c=\frac{[(CH_3)_3NH^+][OH^-]}{[(CH_3)_3N][H_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5B%28CH_3%29_3NH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5B%28CH_3%29_3N%5D%5BH_2O%5D%7D)
]![K_b=K_c\times [H_2O]=\frac{[(CH_3)_3NH^+][OH^-]}{[(CH_3)_3N]}](https://tex.z-dn.net/?f=K_b%3DK_c%5Ctimes%20%5BH_2O%5D%3D%5Cfrac%7B%5B%28CH_3%29_3NH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5B%28CH_3%29_3N%5D%7D)
As we know, water is pure solvent, we can put ![[H_2O]=1](https://tex.z-dn.net/?f=%5BH_2O%5D%3D1)
![K_b=K_c\times 1=\frac{[(CH_3)_3NH^+][OH^-]}{[(CH_3)_3N]}](https://tex.z-dn.net/?f=K_b%3DK_c%5Ctimes%201%3D%5Cfrac%7B%5B%28CH_3%29_3NH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5B%28CH_3%29_3N%5D%7D)
So, the the
expression for the weak base equilibrium is:
![K_b=\frac{[(CH_3)_3NH^+][OH^-]}{[(CH_3)_3N]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5B%28CH_3%29_3NH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5B%28CH_3%29_3N%5D%7D)
- Mass=m=750g=0.75kg
- Q=78.45\times 10^3J=78450J
- T_i=100°C
- T_f=?
- Specific heat capacity=c=4200J/kg°C
According to thermodynamics






<u>Answer:</u> Maximum work that can be obtained by given amount of methanol is -343kJ.
<u>Explanation:</u>
For the given chemical reaction:

By Stoichiometry of the reaction:
2 moles of methanol does a work of 1372 kJ.
So, 0.5 moles of methanol will do a work of = 
Hence, maximum work that can be obtained by given amount of methanol is -343kJ.
The answer for the question is c.