Answer:
7800 J
Explanation:
Heat needed = mass of copper x specific heat of copper x change in temperature
Change in temperature = 30ºC - 20ºC = 10ºC
Specific heat of copper = 390 J/kgºC
Mass of copper = 2 Kg
Substituting the given values in above equation, we get –
Heat needed = 2 Kg x 390 J/kgºC x 10ºC
= 7800 J
Answer:
(a) The current should be in opposite direction
(b) The current needed is 39.8 A
Explanation:
Part (a)
Based, on right hand rule, the current should be in opposite direction
Part (b)
given;
strength of magnetic field, B = 370 µT
distance between the two parallel wires, d = 8.6 cm

At the center, the magnetic field strength is twice

R = d/2 = 8.6/2 = 4.3 cm = 0.043 m

Therefore, current needed is 39.8 A
Speed of the car given initially
v = 18 m/s
deceleration of the car after applying brakes will be
a = 3.35 m/s^2
Reaction time of the driver = 0.200 s
Now when he see the red light distance covered by the till he start pressing the brakes


Now after applying brakes the distance covered by the car before it stops is given by kinematics equation

here
vi = 18 m/s
vf = 0
a = - 3.35
so now we will have


So total distance after which car will stop is


So car will not stop before the intersection as it is at distance 20 m
The strength of the gravitational forces between two masses depends on
-- the product of the masses,
-- the distance between their centers of mass.
Metallic bonds! Hope this helps!! :))