Answer:
reaction B is the best one I would choose
According to Boyle's Law, P1V1 = P2V2
where P1 and V1 are initial pressure and volume respectively. P2 and V2 are final pressure and volume receptively.
Given: P2 = 4 P1 and V1 = 10.0l
∴ V2 = 2.5 l
Answer: Final volume of system is 2.5 l
Answer: 1.
2. 3 moles of
: 2 moles of 
3. 0.33 moles of
: 0.92 moles of 
4.
is the limiting reagent and
is the excess reagent.
5. Theoretical yield of
is 29.3 g
Explanation:
To calculate the moles :

The balanced chemical equation is:
According to stoichiometry :
3 moles of
require = 2 moles of
Thus 0.33 moles of
will require=
of
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 3 moles of
give = 2 moles of
Thus 0.33 moles of
give =
of
Theoretical yield of
Thus 29.3 g of aluminium chloride is formed.
Positively charged and the sodium ion would be a cation
Answer:
Pressure = 4313.43mmHg
Explanation:
P1 = ?
V1 = 0.335L
V2 = 1700mL =1700*10^-3L = 1.7L
P2 = 850mmhg
From Boyle's law, the volume of a fixed mass of gas is inversely proportional to its pressure provided that temperature remains constant.
P = k / v
K = pv. P1V1 = P2V2 = P3V3 =........=PnVn
P1V1 = P2V2
Solve for P1,
P1 = (P2*V2) / V1
P1 = (850 * 1.7) / 0.335
P1 = 4313.43mmHg
The pressure of the gas was 4313.43mmHg