Answer:
identical atom in which an electron moves from the first to the third shell.
Atoms may occupy different energy states. The energy states are discrete, i.e. they occur at specific values only. Therefore an atom can only move to a new energy level if it absorbs or emits an amount of energy that exactly corresponds to the difference between two energy levels.
The lowest possible energy level that the atom can occupy is called the ground state. This is the energy state that would be considered normal for the atom.
An excited state is an energy level of an atom, ion, or molecule in which an electron is at a higher energy level than its ground state.
An electron is normally in its ground state, the lowest energy state available. After absorbing energy, it may jump from the ground state to a higher energy level, called an excited state.
Answer:
It describes length of measurement...
Explanation:
Let us assume that the given data is as follows.
mass of barium acetate = 2.19 g
volume = 150 ml = 0.150 L (as 1 L = 1000 ml)
concentration of the aqueous solution = 0.10 M
Therefore, the reaction equation will be as follows.

Hence, moles of
=
.......... (1)
As, No. of moles =
Hence, moles of
will be calculated as follows.
No. of moles =
=
(molar mass of
is 255.415 g/mol)
= 
Moles of
= 
= 0.01715 mol
Hence, final molarity will be as follows.
Molarity = 
= 
= 0.114 M
Thus, we can conclude that final molarity of barium cation in the solution is 0.114 M.
Answer:
b it increases from left to right of the group and it decreases down the period.
Answer: hydrogen atom of a polarized molecule bonds with an electro negative atom.
Explanation:
Hydrogen bonds are special type of dipole dipole forces which are formed when hydrogen bonds with an electro negative element. Hydrogen bonds are strongest type of bonds .Example: Bond between Oxygen of one water molecule to the hydrogen of another water molecule as shown in the image below.
Covalent bonds are formed by sharing of electrons among non metals.
Ionic bond is formed by transfer of electrons between metals and non metals.