in china, there is a family limit for only having 1 child
at 10 billion people on earth, we will most likely run out of food supply
Answer:
33.2 m
Explanation:
For the first object:
y₀ = 81.5 m
v₀ = 0 m/s
a = -9.8 m/s²
t₀ = 0 s
y = y₀ + v₀ t + ½ at²
y = 81.5 − 4.9t²
For the second object:
y₀ = 0 m
v₀ = 40.0 m/s
a = -9.8 m/s²
t₀ = 2.20 s
y = y₀ + v₀ t + ½ at²
y = 40(t−2.2) − 4.9(t−2.2)²
When they meet:
81.5 − 4.9t² = 40(t−2.2) − 4.9(t−2.2)²
81.5 − 4.9t² = 40t − 88 − 4.9 (t² − 4.4t + 4.84)
81.5 − 4.9t² = 40t − 88 − 4.9t² + 21.56t − 23.716
81.5 = 61.56t − 111.716
193.216 = 61.56t
t = 3.139
The position at that time is:
y = 81.5 − 4.9(3.139)²
y = 33.2
Answer:
2.10L
Explanation:
Given data
V1= 2.5L
T1= 275K
P1= 2.1atm
P2= 2.7 atm
T2= 298K
V2= ???
Let us apply the gas equation
P1V1/T1= P2V2/T2
substitute into the expression we have
2.1*2.5/275= 2.7*V2/298
5.25/275= 2.7*V2/298
Cross multiply
275*2.7V2= 298*5.25
742.5V2= 1564.5
V2= 1564.5/742.5
V2= 2.10L
Hence the final volume is 2.10L
Setting up an integral of
rotation is used as a method of of calculating the volume of a 3D object formed
by a rotated area of a 2D space. Finding the volume is similar to finding the
area, but there is one additional component of rotating the area around a line
of symmetry.
<span>First the solid of revolution
should be defined. The general function
is y=f(x), on an interval [a,b].</span>
Then the curve is rotated
about a given axis to get the surface of the solid of revolution. That is the
integral of the function.
<span>It all depends of the
function f(x), which must be known in order to calculate the integral.</span>