The answer for the following problem is mentioned below.
- <u><em>Therefore 298.44 grams of mercuric oxide is needed to produce 0.692 moles of oxygen molecule </em></u>
Explanation:
Given:
no of moles of the oxygen gas = 0.692
Also given:
2 HgO → 2 Hg + 
where,
HgO represents mercuric oxide
Hg represents mercury
represents oxygen
To calculate:
Molar mass of HgO:
Molar mass of HgO = 216 grams
molar mass of mercury (Hg) = 200 grams
molar mass of oxygen (O) =16 grams
HgO = 200 +16 = 216 grams
We know;
2×216 grams of HgO → 1 mole of oxygen molecule
? → 0.692 moles of oxygen molecule
= 
= 298.944 grams of HgO
<u><em>Therefore 298.44 grams of mercuric oxide is needed to produce 0.692 moles of oxygen molecule </em></u>
<u />
Reactives
-> Products
CuO
and water are products.
I
found this reaction which has CuO and water as products: decomposition of
Cu(OH)2.
Cu(OH)2
-> CuO + H2O
Stoichiometry calculus involve the mole
proportions you can see in the reaction: When 1 mole of Cu(OH)2 reacts, 1 mole of
CuO and 1 mole of H2O are formed.
Considering
the molar masses:
Cu(OH)2
= 83.56 g/mol
CuO
= 79.545 g/mol
H2O
= 18.015 g/mol
Then:
When 83.56 g of Cu(OH)2 react, 79.545 g of CuO and 18.015 g H2O are formed.
You
should use that numbers in the rule of three:
79.545
g CuO __________18.015 g water
3.327
g CuO__________ x =3.327*18.015 /79.545 g water
x= 0.7535 g water
Temperature is a measure of the average kinetic energy of the
particles in an object.
Answer:
When the transfer of electrons occurs, an electrostatic attraction between the two ions of opposite charge takes place and an ionic bond is formed. A salt such as sodium chloride (NaCl) is a good example of a molecule with ionic bonding