Answer:
M1 would seem to be slower because of a larger mass
x1 = A1 sin ω1 t1 describes the displacement
ω1 / ω2 = ((k1 / k2) / (m1 / m2))^1/2 = (m2 / m1)^1/2 since k's are equal
ω1 / ω2 = 1/2 from graph (frequency of 2 is greater)
(m1 / m2)^1/2 = ω2 / ω1 from above
m1 / m2 = 2^2 = 4 so m1 would have 4 times the mass of m2
Answer:
i think D
hope this helps
let me know if i'm wrong i will change the answer
Explanation:
C. is the answer to this question
Answer: Option (c) is the correct answer.
Explanation:
When the child is tossed up into the air then she gains kinetic energy as the child has moved from its initial position.
It is given that mass is 20 kg, velocity is
, and height is 2 m.
Calculate the kinetic energy of child as follows.
kinetic energy = 
= 
= 
= 
Also, when child falls off the ground then she will have gravitational potential energy.
Calculate gravitational potential energy of child as follows.
Potential energy = m × g × h
= 
= 
Answer:
b
Explanation:
When an object is in circular motion, the direction of velocity is in the direction of tangent to the circle and acceleration is always directed towards the radial direction. This means that velocity is always perpendicular to acceleration of the object.
Hence option (b)-The velocity and acceleration vectors are perpendicular is correct.