Answer:
700 mL or 0.0007 m³
Explanation:
P₁ = Initial pressure = 2 atm
V₁ = Initial volume = 350 mL
P₂ = Final pressure = 1 atm
V₂ = Final volume
Here the temperature remains constant. So, Boyle's law can be applied here.
P₁V₁ = P₂V₂

So, volume of this sample of gas at standard atmospheric pressure would be 700 mL or 0.0007 m³
Answer:
The answer is B.
Explanation:
Given that the <em>current </em>(Ampere) in a series circuit is same so we can ignore it. We can assume that the total voltage is 60V and all the 3 resistance are different, 20Ω, 40Ω and 60Ω. So first, we have to find the total resistance by adding :
Total resistance = 20Ω + 40Ω + 60Ω
= 120Ω
Next, we have to find out that 1Ω is equal to how many voltage by dividing :
120Ω = 60V
1Ω = 60V ÷ 120
1Ω = 0.5V
Lastly, we have to calculate the voltage at R1 so we have to multiply by 20 (R1) :
1Ω = 0.5V
20Ω = 0.5V × 20
20Ω = 10V
The kinetic energy would be 53,775J:)
Answer:
B
Explanation:
Atomic structure contains electrons, protons and neutrons.
Electron is very light compared to proton and neutrons.
Given that the mass of an electron is
A) equal to the mass of a proton
B) less than the mass of a neutron
C) greater than the mass of a proton
D) equal to the mass of a neutron
The correct answer is B which is less than the mass of the neurons.
Answer:
Force, |F| = 2100 N
Explanation:
It is given that,
Water from a fire hose is directed horizontally against at a rate of 50.0 kg/s, 
Initial speed, v = 42 m/s
The momentum is reduced to zero, final speed, v = 0
The relation between the force and the momentum is given by :



|F| = 2100 N
So, the magnitude of the force exerted on the wall is 2100 N. Hence, this is the required solution.