Answer:
<h2>A or B</h2>
Explanation:
The autonomic nervous system has two components, the sympathetic nervous system and the parasympathetic nervous system. The sympathetic nervous system functions like a gas pedal in a car. It triggers the fight-or-flight response, providing the body with a burst of energy so that it can respond to perceived dangers.
The velocity of penguin as he ends where he started was 0 m/s.
<h3>What is displacement?</h3>
Displacement is the length of straight line joining the initial and final position of the body.
Given is a penguin who waddled 8 m uphill before sliding back down to its friends in 2 seconds.
We know that the velocity is the rate of change of displacement with respect to time. Mathematically -
v = dx/dt
dx = v dt
∫dx = ∫v dt
Δx = vΔt
v = Δx/Δt
Now, the displacement of the penguin will be = Δx = 8 - 8 = 0
Then, its velocity will be -
v = 0/Δt = 0
Therefore, the velocity of penguin as he ends where he started was 0 m/s.
To solve more questions on kinematics, visit the link below-
brainly.com/question/27200847
#SPJ1
Answer:
Fc = 19.2 N
Explanation:
In this case, the force of the Honda over the rock, is a centripetal force. Then, you have:

m: mass of the rock = 600g = 0.6 kg
v: tangential velocity of the Honda = 4m/s
r: radius of the Honda = 50cm = 0.5m
You replace the values of m, r and v in the equation for Fc:

hence, the force has a magnitude of 19.2 N
If the rock would have more mass the centripetal force would be higher
Explanation:
Given that,
Initial speed of the sports car, u = 80 km/h = 22.22 m/s
Final speed of the runner, v = 0
Distance covered by the sports car, d = 80 km = 80000 m
Let a is the acceleration of the sports car. It can be calculated using third equation of motion as :




Value of g, 


Hence, this is required solution.
Answer:
β = 114 db
Explanation:
The intensity of sound in decibles is
β = 10 log 
in most cases Io is the hearing threshold 1 10-12 W / cm²
let's calculate the intensity of each instrument
I / I₀ = 10 (β / 10)
I = I₀ 10 (β / 10)
trumpet
I1 = 1 10⁻¹² 10 (94/10)
I1 = 2.51 10⁻³ / cm²
Thrombus
I2 = 1 10⁻¹² 10 (107/10)
I2 = 5.01 10-2 W / cm²
low
I3 =1 1-12 (113/10) W/cm²
I3 = 1,995 10-1 W / cm²
when we place the three instruments together their sounds reinforce
I_total = I₁ + I₂ + I₃
I_ttoal = 2.51 10-3 + 5.01 10-2 + 1.995 10-1
I_total = 0.00251 + 0.0501 + 0.1995
I_total = 0.25211 W / cm²
let's bring this amount to the SI system
β = 10 log (0.25211 / 1 10⁻¹²)
β = 114 db