That equation is Newton's universal law of gravitation. ... Any two masses exert equal-and-opposite gravitational forces on each other. If we drop a ball, the Earth exerts a gravitational force on the ball, but the ball exerts a gravitational force of the same magnitude (and in the opposite direction) on the Earth.
Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
Power is the energy transferred or "WORK DONE" in one second
Answer:
Ohms law
Explanation:
Which states that the current flowing through any cross-section of the conductor is directly proportional to the potential differenceapplied across its end, provided physical conditions like temperature and pressure remain constant.