1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8090 [49]
2 years ago
15

A carpenter lifts a 10-kg piece of wood to his shoulder 1.5 m above the ground. He then sets the wood on his truck at 1.0 m abov

e the ground and makes his delivery going 10 m/s. The kinetic energy of the wood during delivery is _____ J
Physics
1 answer:
FinnZ [79.3K]2 years ago
8 0

Answer:

<em>500Joules</em>

Explanation:

Kinetic energy = 1/2mv²

m is the mass of the wood

v is the velocity

Given

Mass = 10kg

Velocity v = 10m/s

Substitute into the formula and get KE

KE = 1/2 * 10 * 10²

KE  = 1/2 * 1000

KE = 500Joules

<em>Hence the kinetic energy of the wood during delivery is 500Joules</em>

You might be interested in
Anyone know how to do this?
Gala2k [10]

Answer:

I think, (remember think) it might be 2.0 m/s

Explanation:

If it's wrong I'm truly sorry.

6 0
2 years ago
A farmer lifts his hay bales into the top loft of his barn by walking his horse forward with a constant velocity of 1 ft/s. Dete
Lesechka [4]

Answer:

The velocity of the hay bale is - 0.5 ft/s and the acceleration is 6.25\times 10^{- 3} ft/s^{2}

Solution:

As per the question:

Constant velocity of the horse in the horizontal, v_{x} = 1 ft/s

Distance of the horse on the horizontal axis, x = 10 ft

Vertical distance, y = 20 ft

Now,

Apply Pythagoras theorem to find the length:

20^{2} + 10^{2} = l^{2}

l^{2}= 500

Now,

x^{2} + y^{2} = 500                            (1)

Differentiating equation (1) w.r.t 't':

2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0

x\frac{dx}{dt} = - y\frac{dy}{dt}

where

\frac{dx}{dt} = Rate of change of displacement along the horizontal

\frac{dy}{dt} = Rate of change of displacement along the vertical

v_{x} = velocity along the x-axis.

v_{y} = velocity along the y-axis

xv_{x} = -yv_{y}

v_{y} = - 10\times \frac{1}{20} = - 0.5 ft/s

|v_{y}| = 0.5\ ft/s

Acceleration of the hay bale is given by the kinematic equation:

v_{y}^{2} = u_{y} + 2ay

(-0.5)^{2} =0 + 2ay

0.25 = 2ay

\frac{0.25}{2y} = a

a = \frac{0.25}{2\times 20} = 6.25\times 10^{- 3} ft/s^{2}

7 0
3 years ago
An LC circuit consists of a 3.4-µF capacitor and a coil with a self-inductance 0.080 H and no appreciable resistance. At t = 0 t
alexira [117]

Answer

given,

capacitance = C = 3.4-µF

inductance = L = 0.08 H

frequency is expressed as

f = \dfrac{1}{2\pi\sqrt{LC}}

time period

T = \dfrac{1}{f}=2\pi\sqrt{LC}

after time T/4 current reach maximum

 t = \dfrac{T}{4}

 t = \dfrac{2\pi\sqrt{LC}}{4}

 t = \dfrac{2\pi\sqrt{0.08 \times 3.4 \times 10^{-6}}}{4}

        t = 8.2 x 10⁻⁴ s

        t = 0.82 ms

b) using law of conservation

  \dfrac{1}{2}CV^2=\dfrac{1}{2}LI^2

  I^2 = \dfrac{CV^2}{L}

  I^2 = \dfrac{C}{L}\dfrac{Q^2}{C^2}

  I =\sqrt{\dfrac{Q^2}{CL}}

  I =\sqrt{\dfrac{(5.4 \times 10^{-6})^2}{0.08 \times 3.4 \times 10^{-6}}}

       I = 0.010 A

       I = 10 mA

4 0
3 years ago
if the instantaneous current in the circuit is giveen by I=3 sin theta amperes, the rms value of the current will be
Kisachek [45]

Answer:

I_{rms}=2.12\ A

Explanation:

Given that,

The instantaneous current in the circuit is giveen by :

I=3\sin\theta\ A

We need to find the rms value of the current.

The general equation of current is given by :

I=I_o\sin\theta

It means, I_o=3\ A

We know that,

I_{rms}=\dfrac{I_o}{\sqrt2}\\\\=\dfrac{3}{\sqrt2}\\\\=2.12\ A

So, the rms value of current is 2.12 A.

4 0
3 years ago
A ball is dropped from rest from the top of a cliff that is 15.0 m high. From ground level, a second ball is thrown straight upw
lesya [120]

Answer:

3.75 meters below the top of the cliff.

7 0
3 years ago
Other questions:
  • Why are the Inner Planets composed mostly of rock and the Outer Planets<br> composed mostly of gas
    11·1 answer
  • What is the potential drop across R3? (R1 = 20 Ω, R2 = 40 Ω, R3= 60 Ω, V = 60 V) (Ohm's law: V = IR)
    5·1 answer
  • An object that is moving in a linear path with an acceleration in the direction opposite to the motion has a(n) ______________ v
    5·1 answer
  • Why is it impossible for us to observe any furthur than 13.7 billion light years in the universe??
    9·1 answer
  • A 100kg cannon at rest contains a 10kgcannonball. when fired,
    15·1 answer
  • The force that opposes the start of motion is referred to as _____.
    9·1 answer
  • Which of the following best explains why lightning occurs?
    7·2 answers
  • How do unicellular organisms reproduce?
    10·1 answer
  • What's the name of first planet closest to the Sun?
    7·2 answers
  • In Bolt’s fastest 100 meter, he accelerated from the starting block to a speed of 27.8 mi/hr in 9.58 s. What was his acceleratio
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!