"<span>using shaving cream, rather than shaving on dry skin" I believe this is the answer. coz rest of them would increase friction rather than decrease</span>
Answer:
27.60 g urea
Explanation:
The <em>freezing-point depression</em> is expressed by the formula:
In this case,
- ΔT = 5.6 - (-0.9) = 6.5 °C
m is the molality of the urea solution in X (mol urea/kg of X)
First we<u> calculate the molality</u>:
- 6.5 °C = 7.78 °C kg·mol⁻¹ * m
Now we<u> calculate the moles of ure</u>a that were dissolved:
550 g X ⇒ 550 / 1000 = 0.550 kg X
- 0.84 m = mol Urea / 0.550 kg X
Finally we <u>calculate the mass of urea</u>, using its molecular weight:
- 0.46 mol * 60.06 g/mol = 27.60 g urea
Answer:
D) 1/2
Explanation:
Using Ideal gas equation for same mole of gas as
Given,
P₂ = 4P₁
T₂ = 2T₁
Using above equation as:

<u>The volume change by half of the original.</u>
Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C