Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
The second stone hits the ground exactly one second after the first.
The distance traveled by each stone down the cliff is calculated using second kinematic equation;

where;
- <em>t is the time of motion </em>
- <em />
<em> is the initial vertical velocity of the stone = 0</em>

The time taken by the first stone to hit the ground is calculated as;

When compared to the first stone, the time taken by the second stone to hit the ground after 1 second it was released is calculated as


Thus, we can conclude that the second stone hits the ground exactly one second after the first.
"<em>Your question is not complete, it seems be missing the following information;"</em>
A. The second stone hits the ground exactly one second after the first.
B. The second stone hits the ground less than one second after the first
C. The second stone hits the ground more than one second after the first.
D. The second stone hits the ground at the same time as the first.
Learn more here:brainly.com/question/16793944
Answer:
An object has the MOST kinetic energy when it's movement is the GREATEST.
Explanation: