Answer:
Natae Si Jordan Kaya Sya Napaihe
Explanation:
haha
Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean
Quantitative because it tells you how many wheels
Classics.
Resistance is equal to relation between voltage and current.

If we express current:

If current is in fact 0 then one of the quantities either voltage or resistance must be equal to zero. Since resistance cannot be equal 0, because that would violate mathematical law that states that division by zero is undefined the only logical conclusion is voltage.
So the answer should be C voltage and B zero.
Hope this helps!
Ok so we know:
The time (t) is 18seconds
The acceleration (a) is 2.2m/s2
The displacement (r) is 660
Using the equation

With 'u' being the initial velocity we want, we get:

So:

So:

So the original/initial velocity was 16.8666 or 16.87 m/s
Hope this helped