A3B9 represents a molecular formula. The representation of the empirical formula for this compound is AB3. This is so because the empirical formula is the simplest ratio of the atoms present in the molecule. You get AB3 when you divide the subscripts of A3B9, this is 3 and 9, by the greatest common factor, which is 3. 3/3 = 1 and 9/3 = 3, so the subscripts for the empirical formula are 1 and 3, which is what AB3 represents. <span>Answer: AB3.</span>
The minimum amount of energy that colliding particles must have for them to react.
Answer:
20 protons, 20 electrons, and 21 neutrons
Explanation:
The atomic number of an atom is the number of protons it has. If the atomic number is 20 then we know the atom has 20 protons.
•The mass number of an atom is the total number of protons and neutrons the atom contains. The mass number is 41 and the number of protons is 20, just subtract 20 from 41 and you will get the number of neutrons: 41 - 20= 21. The atoms has 21 neutrons.
•The number of electrons found in an atom is equal to the number of protons. The atoms has 20 protons which means it has 20 electrons.
So, the answer is:
20 protons, 20 electrons, and 21 neutrons
The correct answer for the question that is being presented above is this one: "C. planetesimals ® heavier elements ® inner planets ® protoplanets" The list of the stages of development of the inner planets is this <span>C. planetesimals ® heavier elements ® inner planets ® protoplanets</span>
To find the empirical formula you would first need to find the moles of each element:
58.8g/ 12.0g = 4.9 mol C
9.9g/ 1.0g = 9.9 mol H
31.4g/ 16.0g = 1.96 O
Then you divide by the smallest number of moles of each:
4.9/1.96 = 2.5
9.9/1.96 = 6
1.96/1.96 = 1
Since there is 2.5, you find the least number that makes each moles a whole number which is 2.
So the empirical formula is C5H12O2.