<span>They want a full outer shell of electrons, so the lose, gain, or share electrons with other elements, forming compounds, until they have 8 valence electrons and become stable.
</span>
The question is missing the graphics required to answer which I have attached as an image.
There are four different representations of the orientation of water molecules around chloride anion. Let's first analyze the water molecule.
We have H-O-H as the structure of water. The oxygen atom is more electronegative than the hydrogen atoms, which results in a partial positive charge on the hydrogen atoms and a partial negative charge on the oxygen atom.
The chloride anion is a negative charge. Therefore, the water molecules should orient themselves with the hydrogen atoms facing the chlorine atom as the partial positive charge on the hydrogen atoms will be attracted to the negative charge of the chlorine atom.
The correct representation is shown in graph 3 which shows all hydrogen atoms facing the chlorine anion.
Answer:
The correct answer is B) HOOCCH2CH2COOH(aq)
Explanation:
Both Ka1 and Ka2 are low, so the acid will dissociate only slightly into HOOCCH2CH2COO- ions and even more slightly into -OOCCH2CH2COO- ions. The concentration of hydronium ions (H₃O⁺) will be consequently low. The species that will be in the highest concentration will be HOOCCH2CH2COOH (the weak acid not dissociated).