Hello!
The initial mass of
Magnesium Sulfate Heptahydrate (MgSO₄·7H₂O) is 23,08 g
The chemical reaction for the dehydrating of
Magnesium Sulfate Heptahydrate (MgSO₄·7H₂O) is the following:
MgSO₄·7H₂O(s) + Δ → MgSO₄(s) + 7H₂O(g)
We know that the sample loses 11,80 g upon heating.
That mass is the mass of Water that is released as vapor. Knowing that piece of information, we can apply the following conversion factor to go from the mass of water to the moles of water and back to the mass of the original compound (mi).

Have a nice day!
<span>Na2CO3 (aq) + CaCl2H4O2 (aq) = CaCO3 (s) + 2 NaCl (aq) + 2 H2O (l)</span>
Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³
<h3>Answer </h3>
After another 5730 years ( three half lives or 17190 years) 17.5 /2 = 8.75mg decays and 8.75g remains left. after three half lives or 17190 years, 8.75 g of C-14 will be
Explanation:
hope this help
Answer:
[Au] = 0.171 M
Explanation:
For this question, we assume the rock is 100 % gold.
First of all, we determine the moles of gold
67.3 g . 1mol/ 196.97g = 0.342 moles
Molar concentration is defined as the moles of solute, contained in 1L of solution.
Our solution volume is 2L.
M = 0.342 mol / 2L = 0.171
Molar concentration, also called molarity of solution is the most typical unit of concentration.