Answer:
80.1 grams
Explanation:
Find the molar mass of CH3OH first by using the periodic table values.
12.011 g/mol C + (1.008*3 g/mol H) + 15.999g/mol O + 1.008 g/mol H
=32.042 so that is the molar mass
Now that you have 2.50 moles of CH3OH, you can calculate the mass in g
2.50molCH3OH * (32.042g CH3OH / 1 mol CH3OH) = 80.105
32.042g / 1 mol is the same as 32.042 g/mol
Since there are 3 sig figs in the problem (2.50 has 3 sig figs), you round to 80.1 g CH3OH
Answer:
V₂ = 2.1 L
Explanation:
Given data:
Initial volume of balloon = 2.0 L
Initial temperature = 25°C
Final temperature = 35°C
Final volume of balloon in hot room = ?
Solution:
Initial temperature = 25°C (25+273= 298 K)
Final temperature = 35°C (35+273 = 308 k)
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 2.0 L × 308 K / 298 k
V₂ = 616 L.K / 298 K
V₂ = 2.1 L
Hydrogen H weight: 81
Non-metal
Hydrogen is the simplest element; an atom consists of only one proton and one electron. It is also the most plentiful element in the universe. Despite its simplicity and abundance, hydrogen doesn't occur naturally as a gas on the Earth--it is always combined with other elements.
period 1 group 1
Hydrogen is easily the most abundant element in the universe. It is found in the sun and most of the stars, and the planet Jupiter is composed mostly of hydrogen. On Earth, hydrogen is found in the greatest quantities as water.
Answer:
Protons, Neutrons, and Electrons
Explanation:
[A]0= Initial concentration
t1/2= half life
[A]= final concentration
k= rate constant