Answer:
0.01836 M
Explanation:
Again the reaction equation is;
Fe(s) + Mn2+(aq) → Fe2+(aq) + Mn(s)
E°cell= 0.77 V
Ecell= 0.78 V
[Mn2+] = 0.040 M
[Fe2+] = the unknown
n=2
From Nernst's equation;
Ecell= E°cell- 0.0592/n log Q
0.78= 0.77 - 0.0592/2 log [Fe2+] /[0.040]
0.78-0.77= - 0.0592/2 log [Fe2+] /[0.040]
0.01/ -0.0296= log [Fe2+] /[0.040]
-0.3378= log [Fe2+] /[0.040]
Antilog(-0.3378) = [Fe2+] /[0.040]
0.459= [Fe2+] /[0.040]
[Fe2+] = 0.459 × 0.040
[Fe2+] = 0.01836 M
The Curiosity rover found sulfur compounds in rocks and carbon in organic compounds like propane, butene, benzene, toluene and thiophene.
It detected methane, not in soil samples, but in the Martian atmosphere.
It did not discover helium in underground pockets. The hole it can drill is only 5 cm deep.
Answer:
#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.
Explanation:
Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆
1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.
=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP
2. Calculate moles of F₂ used
=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used
3. Calculate moles of XeF₆ produced from reaction ratios …
Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆
4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number (6.02 x 10²³ molecules/mole)
=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)
= 2.75 x 10²³ molecules XeF₆.
Answer:<span>d. 145 minutes
</span>
Half-life is the time needed for a radioactive to decay half of its weight. The formula to find the half-life would be:
Nt= N0 (1/2)^ t/h
Nt= the final mass
N0= the initial mass
t= time passed
h= half-life
If 25.0% of the compound decomposes that means the final mass would be 75% of initial mass. Then the half-live for the compound would be:
Nt= N0 (1/2)^ t/h
75%= 100% * (1/2)^ (60min/h)
3/4= 1/2^(60min/h)
log2 3/4 = log2 1/2^(60min/h)
0.41503749928 = -60min/h
h= -60 min / 0.41503749928= 144.6min