- Weight (W) = 110 N
- Acceleration due to gravity (g) = 9.8 m/s^2
- Let the mass of the object be m.
- By using the formula, W = mg, we get,
- 110 N = 9.8 m/s^2 × m
- or, m = 110 N ÷ 9.8 m/s^2
- or, m = 11.2 Kg
<u>Answer:</u>
<em><u>The </u></em><em><u>mass </u></em><em><u>of </u></em><em><u>the </u></em><em><u>object </u></em><em><u>is </u></em><em><u>1</u></em><em><u>1</u></em><em><u>.</u></em><em><u>2</u></em><em><u> </u></em><em><u>Kg.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.
The complete sentence is:
In a third class lever, the distance from the effort to the fulcrum is SMALLER the distance from the load/resistance to the fulcrum.
In fact, in a third class lever, the fulcrum is on one side of the effort and the load/resistance is on the other side, so the effort is located somewhere between the two of them. This means that the distance effort-fulcrum is smaller than the distance load-fulcrum.
Answer:
Explanation:
The kinetic energy will convert to heat energy (provided the car has friction brakes and not regenerative brakes as might be found on an electric or hybrid) Also<u> assuming level road</u>.
E = ½mv² = ½(1000)30² = 450,000 J
When a crest-trough meet the interference produced will be destructive in nature hence they both will cancel out and the amplitude produced will be equal to zero hence the loudness will reduce to zero.