W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
Answer:
A scalar quantity is defined as the physical quantity that has only magnitude, for example, mass and electric charge. On the other hand, a vector quantity is defined as the physical quantity that has both magnitude as well as direction like force and weight.
Answer:
Im pretty sure 1 is gravity, 2 is force
Explanation:
Answer:
As you know, the denser objects have more weight per unit of volume, this will mean that the force that pulls down these objects is a bit larger.
This will mean that the denser objects will always go to the bottom.
This clearly implies that the red liquid, the one with one of the smaller densities, can not be at the bottom.
There are some cases where a liquid with a small density may become a lot denser as the temperature or pressure changes, and in a case like that, we could see the red liquid at the bottom, but for this case, there is no mention of changes in the temperature nor in the pressure, so this can be discarded.
The only thing that makes sense is that the red part at the bottom is the base of the tube, and has nothing to do with the red liquid.
Explanation:
where is the question
I did not understood this question