1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
15

Help with these questions please?

Physics
1 answer:
egoroff_w [7]3 years ago
8 0

Answer:

5. dispersion

6. 49.8°

Explanation:

5. Dispersion is the name given to the phenomenon of light of different wavelengths being bent differently. A rainbow is the result of light from a point source (the sun) being spread out by wavelength (color), a nice example of dispersion.

___

6. n = 1.31 is the ratio of the sine of the angle of refraction to the sine of the angle of incidence (for light passing to a medium of n = 1). When the angle of refraction is 90°, the angle of incidence is the "critical angle." So, ...

sin(90°)/sin(critical) = 1.31

critical angle = arcsin(1/1.31) ≈ 49.8°

You might be interested in
Gary saved dimes and nickels at a ratio of 5:7. Then, he saved 20% more dimes and 3 times the original number of nickels. If he
TiliK225 [7]

Answer:

i think 53 or 56

Explanation:

cause i cross multiplied and got that

8 0
3 years ago
Read 2 more answers
A rigid, insulated tank whose volume is 10 L is initially evacuated. A pinhole leak develops and air from the surroundings at 1
balandron [24]

Answer:

The answer is "143.74^{\circ} \ C , 8.36\ g, and \ 2.77\ \frac{K}{J}"

Explanation:

For point a:

Energy balance equation:

\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\

W=0\\\\Q=0\\\\m_e=0

From the above equation:

\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\

because the rate of air entering the tank that is h_i constant.

\Delta U = h_i \int^{2}_{1} m_i dt \\\\= h_i(m_2 -m_1)\\\\m_2u_2-m_1u_2=h_i(M_2-m_1)\\\\

Since the tank was initially empty and the inlet is constant hence, m_2u-0=h_1(m_2-0)\\\\m_2u_2=h_1m_2\\\\u_2=h_1\\\\

Interpolate the enthalpy between T = 300 \ K \ and\ T=295\ K. The surrounding air  

temperature:

T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}

Substituting the value from ideal gas:

\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}

Follow the ideal gas table.

The u_2= 298.33\ \frac{kJ}{kg} and between temperature T =410 \ K \ and\  T=240\ K.

Interpolate

\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}

Substitute values from the table.

 \frac{420-410}{300.69-293.43}=\frac{420-T_2}{{u_{420 k}-u_2}}\\\\T_2=416.74\ K\\\\=143.74^{\circ} \ C\\\\

For point b:

Consider the ideal gas equation.  therefore, p is pressure, V is the volume, m is mass of gas. \bar{R} \ is\  \frac{R}{M} (M is the molar mass of the  gas that is 28.97 \ \frac{kg}{mol} and R is gas constant), and T is the temperature.

n=\frac{pV}{TR}\\\\

=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\

For point c:

 Entropy is given by the following formula:

\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}

5 0
2 years ago
What is the weight of a 5.00 kg object on Earth? Assume g=9.81 m/s^2.
Softa [21]

<em>weight = (mass) x (gravity)</em>

Weight = (5.00 kg) x (9.81 m/s²)

weight = (5.00 x 9.81) (kg-m/s²)

<em>Weight = 49.05 Newton</em>

7 0
3 years ago
The product side of a chemical reaction is shown. → 7Ti2(SO4)3
Alex_Xolod [135]
The answer is the fourth choice because there are 7 represents in a coefficient.

7 0
3 years ago
Read 2 more answers
Two identical 9.10-g metal spheres (small enough to be treated as particles) are hung from separate 300-mm strings attached to t
Musya8 [376]

Answer:

n = 1.266\times 10^{12}

Explanation:

Given data:

mass of sphere is 10 g

Angle between string and vertical axis is \theta = 13 degree

thickness of string  300 mm = 0.3 m

sin\theta =\frac{2}{0.3 m}

r =0.3 sin 13 = 0.067 m

Fe = \frac{ kq_1 q-2}{d^2}

Fe = \frac{kq^2}{(2r)^2} = mg tan\theta

q^2 =  mg tan\theta \frac{(2r)^2}{k}

    = 0.0091 \times 9.8 tan13 \times \frac{(2\times 0.067)^2}{9\times 10^9}

q^2 = 4.10\times 10^{-14}

q = 2.026 \times 10^{-7} C

q = ne

n = \frac{1.6\times 10^{-19}}{2.02\times 10^{-7}}

n = 1.266\times 10^{12}

3 0
3 years ago
Other questions:
  • Two objects, labeled A and B, are the same size. Object A has a density of 1.21 g/cm3. Object B has a density of 1.37 g/cm3. Bot
    15·2 answers
  • How far does a plane fly in 15 s while its velocity is changing from 145 m/s to 75 m/s at a uniform rate of acceleration?
    15·2 answers
  • Disorder in the universe increases because
    13·1 answer
  • A brass rod 175.00 mm long and 5.00 mm in diameter extends horizontally from a casting at 200°C. The rod is in an air environmen
    5·1 answer
  • An electron is acted on by two electric forces, one of 2.7×10-14 N acting upward and a second of 5.8×10-14 N acting to the right
    7·1 answer
  • Calculate the equivalent of 20 degrees Celsius in degrees Fahrenheit and Kelvin.
    8·1 answer
  • A 6V radio with a current of 2A is turned on for 5 minutes. Calculate the energy transferred in joules
    12·1 answer
  • 4. Look at the graph above. What information is on the graph and what does it mean? Please help!!!
    6·1 answer
  • Can someone plz help me on this, it would me alot to me <br> thx
    7·1 answer
  • When the rudder moves to the left the plane will move to the right or left?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!