Force = (mass) x (acceleration) Newton's second law of motion.
Force = (2 kg) x (3 m/s²) = 6 newtons.
Answer:
208
Explanation:
add it together for the answer
Maybe this will help you out:
Momentum is calculate by the formula:

Where:
P = momentum
m = mass
v = velocity
The SI unit:

So the unit of momentum would be:

Impulse is defined as the change in momentum or how much force changes momentum. It can be calculate with the formula:
I = FΔt
where:
I = impulse
F = Force
Δt = change in time
The SI unit:
F = Newtons (N) or 
t = Seconds (s)
So the unit of impulse would be derived this way:
I = FΔt
I =
x 
or

You can then cancel out one s each from the numerator and denominator and you'll be left with:

So then:
Momentum: Impulse

A 100 g cart is moving at 0.5 m/s that collides elastically from a stationary 180 g cart. Final velocity is calculated to be 0.25m/s.
Collision in which there is no net loss in kinetic energy in the system as a result of the collision is known as elastic collision . Momentum and kinetic energy both are conserved quantities in elastic collisions.
Collision in which part of the kinetic energy is changed to some other form of energy is inelastic collision.
For an elastic collision, we use the formula,
m₁V₁i+ m₂V₂i = m₁V1f + m₂V₂f
For a perfectly elastic collision, the final velocity of the 100g cart will each be 1/2 the velocity of the initial velocity of the moving cart.
Final velocity = 0.5/2
=0.25 m/s.
To know more about elastic collision, refer
brainly.com/question/7694106
#SPJ4
Answer:
7.82 s
Explanation:
Given:
Δy = 300 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(300 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 7.82 s