The resistance is 4 times the resistance of the first wire. the formula is R = p*l/A with p being resistivity, l length and A area. So if you double length and half area, which botv result in more resistance, you get p*2/0.5 or 4 (p can be abandoned because it is the same. We take standard length and area as 1)
Answer:Eating. Your muscles in your arms and mouth use energy to feed itself. Then your body digest the food which also takes energy.
Sleep. When your tired, you don’t have much energy. It is said that you use more energy while your sleeping. But how do you become energized if you were using even more energy than before?
(a) The system of interest if the acceleration of the child in the wagon is to be calculated are the wagon and the children outside the wagon.
(b) The acceleration of the child-wagon system is 0.33 m/s².
(c) Acceleration of the child-wagon system is zero when the frictional force is 21 N.
<h3>
Net force on the third child</h3>
Apply Newton's second law of motion;
∑F = ma
where;
- ∑F is net force
- m is mass of the third child
- a is acceleration of the third child
∑F = 96 N - 75 N - 12 N = 9 N
Thus, the system of interest if the acceleration of the child in the wagon is to be calculated are;
- the wagon
- the children outside the wagon
<h3>Free body diagram</h3>
→ → Ф ←
1st child friction wagon 2nd child
<h3>Acceleration of the child and wagon system</h3>
a = ∑F/m
a = 9 N / 27 kg
a = 0.33 m/s²
<h3>When the frictional force is 21 N</h3>
∑F = 96 N - 75 N - 21 N = 0 N
a = ∑F/m
a = 0/27 kg
a = 0 m/s²
Learn more about net force here: brainly.com/question/14361879
#SPJ1
<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
The freezing point ..... :)