Solution :
Acceleration due to gravity of the earth, g
Acceleration due to gravity at 1000 km depths is :
= 8.23 m/s
Acceleration due to gravity at 2000 km depths is :
= 6.73 m/s
Acceleration due to gravity at 3000 km depths is :
= 5.18 m/s
Acceleration due to gravity at 4000 km depths is :
= 3.64 m/s
The correct answer is “C” ultrasound. Hope this helps!
Newton's law of universal gravitation, says that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
Or in simple words, every particle in the world attracts each other to themselves, but the particle with most mass would attract with more force compared to a particle with less mass.
(<u><em>Please consider leaving a rate, a thanks and, a crown would be really appreciated! Thank you!</em></u>)
Answer:
Newton's Second Law of Motion
Explanation:
According to Newton's second law of motion, the change in velocity of a body is directly proportional to the force applied on it. Velocity is a vector quantity. It measures the magnitude of the speed as well as its direction.
F = m a
where, F is the applied force, m is the mass and a is the acceleration.
It can also be expressed as:
where, p = mv ( momentum)
<h2>Answer: The second Statement
</h2>
<h2>
The algebraic sum of the currents flowing through each of the three resistors is equal to the current through the battery. </h2><h2 />
In a series circuit, the value of the equivalent resistance is equal to the sum of the values of each of them:
Where:
<h2>The equivalent resistance of the combination of resistors is greater than the resistance of any one of three resistors. </h2>
In this case the current flowing through the resistors is the same in each one. This is because the current flowing through the circuit only has one way to go, so the current intensity is the same throughout the circuit.
Therefore:
<h2>The current flowing through each of the resistors is the same and is equal to the current through the battery. </h2><h2>The algebraic sum of the voltages across the three resistors is equal to the voltage across the battery. </h2>
The battery provides a voltage that is the sum of the different voltages at the ends of the resistors:
Where the Voltage, according to Ohm's law is:
Hence, the second statement of this question is <u>True
</u>