Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Because the Earth<span> is a sphere, the surface gets much more intense </span>sunlight<span>, hence heat, at </span>the equator<span>than at the poles.</span>
1). The equation is: (speed) = (frequency) x (wavelength)
Speed = (256 Hz) x (1.3 m) = 332.8 meters per second
2). If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.
If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.
If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.
3). The equation is: Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)
Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.
That's ' 200 k Hz ' .
Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised. They broadcast on several different frequencies,
and one of them is 198 kHz !