Answer:
0.1M NH3
Explanation:
The boiling point of aqueous solutions depend on the nature of intermolecular interactions present. KBr will yield an ionic solution but NH3 will yield a molecular solution having hydrogen bonds. The degree of hydrogen bonding in the aqueous solution will further increase with the concentration of the solution.
Remember that experimental data shows that hydrogen bonds are strong bonds that lead to a significant increase in the boiling point of solutions. Hence 0.1M NH3 solution will have a higher boiling point due to intermolecular hydrogen bonding in the solution.
Pressure on the inside of the balloon was greater than the pressure on the outside of the balloon so it pushed out until the pressures equalized.
Answer:
yes great job you do know that you can make high voltage capacitors to store static electricity just look up ElectroBooms high voltage capacitor he made it's very useful if you want to learn more.
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
Psolution = X · PH_20
= 0.966 · 31.8 torr
= 30.7 torr