Given:
257J of heat
5500g of mercury
increase by 5.5
degrees Celsius
Required:
Specific heat of
mercury
Solution:
H
= mCpT
257J = (5500g of
mercury) Cp (5.5 degrees Celsius)
Cp = 8.5 x 10^-3
Joules per gram per degree Celsius
Imagine a chemist is in the lab and trying to make some chemical reactions happen. In one reaction she reacts chemicals in an exothermic reaction and there is an increase in entropy. A second chemical reaction she is trying to run is endothermic and there is a decrease in entropy. Which of the two reactions is more likely to occur and why?
To calculate for the final temperature, we need to remember that the heat rejected should be equal to the absorbed by the other system. We calculate as follows:
Q1 = Q2
(mCΔT)1 = (mCΔT)2
We can cancel m assuming the two systems are equal in mass. Also, we cancel C since they are the same system. This leaves us,
(ΔT)1 = (ΔT)2
(T - 80) = (0 - T)
T = 40°C
I would say is because of the Boron from O?