Answer:
physcial change
Explanation:
As it has visible changes on shape and size
Answer:
The atom must lose its three extra electrons to make the atom over all neutral.
Explanation:
The three subatomic particles construct an atom electron, proton and neutron. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons.
If an atom have -3 charge it means three more electrons are added. In order to make the atom overall neutral three more electrons must be removed so that negative and positive charge becomes equal and cancel the effect of each other and make the atom neutral.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e⁻
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Proton and neutron:
While neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷ Kg
Answer:
261.337 g/mol
Explanation:
Please mark brainliest my answer got taken down its correct
Answer:
- <u><em>Sodium chloride</em></u>
Explanation:
The attached graph with a green and a red arrow facilitates the understanding of this explanation.
To read the <em>solubility </em>on the <em>graph</em>, you can start with the temperature, on the x-axis.
The red vertical arrow shows how, departing from the <em>40ºC temperature</em> on the x-axis, you intersect the<em> solutibility curve </em>of sodium chloride at a height (y-axis) corresponding to <em>60 g/100cm³ of water</em> (follow the green horizontal arrow).
Hence, <em>sodium chloride is the salt that can dissolve at a concentration of about 60g/100cm³ of water at 40ºC.</em>