Answer:
Answer:
the amount of energy flowing is 1.008x10⁹J
Explanation:
To calculate how much heat flows, the expression is the following:
Where
K=thermal conductivity=0.81W/m°C
A=area=6.2*12=74.4m²
ΔT=30-8=22°C
L=thickness=8cm=0.08m
t=time=16.9h=60840s
Replacing:
Explanation:
Answer:
Initial pressure = 6 atm. Work = 0.144 J
Explanation:
You need to know the equation P1*V1=P2*V2, where P1 is the initial pressure, V1 is the initial volume, and P2 and V2 are the final pressure and volume respectively. So you can rearrange the terms and find that (1.2*0.05)/(0.01) = initial pressure = 6 atm. The work done by the system can be obtained calculating the are under the curve, so it is 0.144J
Complete Question
A thin, horizontal, 12-cm-diameter copper plate is charged to 4.4 nC . Assume that the electrons are uniformly distributed on the surface. What is the strength of the electric field 0.1 mm above the center of the top surface of the plate?
Answer:
The values is 
Explanation:
From the question we are told that
The diameter is 
The charge is 
The distance from the center is 
Generally the radius is mathematically represented as

=> 
=> 
Generally electric field is mathematically represented as
![E = \frac{Q}{ 2\epsilon_o } [1 - \frac{k}{\sqrt{r^2 + k^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7BQ%7D%7B%202%5Cepsilon_o%20%7D%20%5B1%20-%20%5Cfrac%7Bk%7D%7B%5Csqrt%7Br%5E2%20%2B%20%20k%5E2%20%7D%20%7D%20%5D)
substituting values
![E = \frac{4.4 *10^{-9}}{ 2* (8.85*10^{-12}) } [1 - \frac{(1.00 *10^{-4})}{\sqrt{(0.06)^2 + (1.0*10^{-4})^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7B4.4%20%2A10%5E%7B-9%7D%7D%7B%202%2A%20%288.85%2A10%5E%7B-12%7D%29%20%7D%20%5B1%20-%20%5Cfrac%7B%281.00%20%2A10%5E%7B-4%7D%29%7D%7B%5Csqrt%7B%280.06%29%5E2%20%2B%20%20%281.0%2A10%5E%7B-4%7D%29%5E2%20%7D%20%7D%20%5D)

Answer:
3 electron hai bro of puch mujhe sab aata h
Answer:
speed of plane in still air = 1060 km/h
speed of wind = 170 km/h
Explanation:
Let teh speed of plane in still air is vp and the speed of air is va.
Irt travels 2670 km in 3 hours against the wind
So,
vp - va = 2670 / 3 = 890 km/h ..... (1)
It travels 11070 km in 9 hours along the wind.
vp + va = 11070 / 9 = 1230 km/h .... (2)
Adding both the equations
2 vp = 2120
vp = 1060 km/h
and va = 1230 - vp = 1230 - 1060 = 170 km/h