Answer:
The magnitude of the magnetic field made by current in the wire is 3.064 x 10⁻⁶ T.
Explanation:
Given;
length of the straight wire, L = 0.56 m
conventional current, I = 0.4 A
distance of magnetic field from the wire, r = 2.6 cm = 0.026 m
To determine magnitude of magnetic field made by current in the wire, we will apply Bio-Savart Law;

Therefore, the magnitude of the magnetic field made by current in the wire is 3.064 x 10⁻⁶ T.
Explanation:
I remember that notation! The expression

is the 1st law of thermodynamics and it refers to the heat supplied to the system dQ which is also a change in its internal energy dU. The first term is the <u>partial</u> derivative of the internal energy U with respect to temperature T while the volume V is kept constant, as denoted by the subscript V. The 2nd term is similar but this time, temperature is kept constant while its volume partial derivative is being taken.
Ah, memories!
An example of an aerobic activity would be A, Cross-country skiing
Answer:
The total surface are of the bowl is given by: 0.0532*pi m² (approximately 0.166533 m²)
Explanation:
The total surface area of the semi-spherical bowl can be decomposed in three different sections: 1) an outer semi-sphere of radius 12 cm, 2) an inner semi-sphere of radius 10 cm, and 3) the edge, which is a 2-dimensional ring with internal radius of 10 cm and external radius of 12 cm. We will compute the areas independently and then sum them all.
a) Outer semi-sphere:
A1 = 2*pi*r² = 2*pi*(12 cm)² = 288*pi cm² = 904.78 cm²
b) Inner semi-sphere:
A2 = 2*pi*(10 cm)² = 200*pi cm² = 628.32 cm²
c) Edge (Ring):
A3 = pi*(r1² - r2²) = pi*((12 cm)²-(10 cm)²) = pi*(144-100) cm² = 44*pi cm² = 138.23 cm²
Therefore, the total surface area of the bowl is given by:
A = A1 + A2 + A3 = 288*pi cm² + 200*pi cm² + 44*pi cm² = 532*pi cm² (approximately 1665.33 cm²)
Changing units to m², as required in the problem, we get:
A = 532*pi cm² * (1 m² / 10, 000 cm²) = 0.0532*pi m² (approximately 0.166533 m²)
The distance traveled by the particle at the given time interval is 0.28 m.
<h3>
Position of the particle at time, t = 0</h3>
The position of the particle at the given time is calculated as follows;
x = 2 sin2(t)
y = 2 cos2(t)
x(0) = 2 sin2(0) = 0
y(0) = 2 cos2(0) = 2(1) = 2
<h3>
Position of the particle at time, t = 4</h3>
x = 2 sin2(t)
y = 2 cos2(t)
x(4) = 2 sin2(4) = 0.28
y(4) = 2 cos2(4) = 2(1) = 1.98
<h3>Distance traveled by the particle at the given time interval</h3>
d = √[(x₄ - x₀)² + (y₄ - y₀)²]
d = √[(0.28 - 0)² + (1.98 - 2)²]
d = 0.28 m
Thus, the distance traveled by the particle at the given time interval is 0.28 m.
Learn more about distance here: brainly.com/question/23848540
#SPJ1