Answer: A)
Explanation: when an electron is placed in a magnetic field, it experiences a force.
This force is given below as
F=qvB*sinθ
F = force experienced by charge.
q = magnitude of electronic charge
v = speed of electron
B= strength of magnetic field
θ = angle between magnetic field and velocity.
What defines the force exerted on the charge is the angle between the field and it velocity.
If magnetic field is parallel to velocity, then it means that θ=0° which means sin 0 = 0, which means
F = qvB * 0 = 0.
The charge being at rest has nothing to do with the angle between magnetic field strength and velocity.
Answer:
17 °C
Explanation:
From specific Heat capacity.
Q = cm(t₂-t₁)................. Equation 1
Where Q = Heat absorb by the metal block, c = specific heat capacity of the metal block, m = mass of the metal block, t₂ = final temperature, t₁ = Initial temperature.
make t₁ the subject of the equation
t₁ = t₂-(Q/cm)............... Equation 2
Given: t₂ = 22 °C, Q = 5000 J, m = 4 kg, c = 250 J/kg.°c
Substitute into equation 2
t₁ = 22-[5000/(4×250)
t₁ = 22-(5000/1000)
t₁ = 22-5
t₁ = 17 °C
Answer:
D)evaluating a solution
Explanation:
In this scenario, the next logical step would be evaluating a solution. This is because Jasper and Samantha have already identified the problem/need which is that the robot needs to be able to move a 10-gram weight at least 2 meters and turn in a circle. They also designed and implemented a solution because they have already built the robot. Therefore the only step missing is to evaluate and make sure that the robot they built is able to complete the requirements.
To answer this question, you must remember the equation:
a²+b²= c²
(6.4)² + (12)²= (12.2)²
<span>40.96 + 144 = 184.96
</span> (12.2)² = <span>148.84
</span>
184.96 ≠ 148.84
This cannot be a triangle
hope this helps
Answer:
Specific heat capacity is an intensive property and does not depend on sample size.
Explanation: