Let
be the height of the building and thus the initial height of the ball. The ball's altitude at time
is given by

where
is the acceleration due to gravity.
The ball reaches the ground when
after
. Solve for
:


so the building is about 16 m tall (keeping track of significant digits).
Top left: slowing down
Top right: not moving
Bottom left: moving at a constant speed
Bottom right: speeding up
Given:
Uniform distributed load with an intensity of W = 50 kN / m on an overhang beam.
We need to determine the maximum shear stress developed in the beam:
τ = F/A
Assuming the area of the beam is 100 m^2 with a length of 10 m.
τ = F/A
τ = W/l
τ = 50kN/m / 10 m
τ = 5kN/m^2
τ = 5000 N/ m^2<span />
Answer:
Length of the pipe = 53.125 cm
Explanation:
given data
harmonic frequency f1 = 800 Hz
harmonic frequency f2 = 1120 Hz
harmonic frequency f3 = 1440 Hz
solution
first we get here fundamental frequency that is express as
2F = f2 - f1 ...............1
put here value
2F = 1120 - 800
F = 160 Hz
and
Wavelength is express as
Wavelength = Speed ÷ Fundamental frequency ................2
here speed of waves in air = 340 m/s
so put here value
Wavelength =340 ÷ 160
Wavelength = 2.125 m
so
Length of the pipe will be
Length of the pipe = 0.25 × wavelength ......................3
put here value
Length of the pipe = 0.25 × 2.125
Length of the pipe = 0.53125 m
Length of the pipe = 53.125 cm
The best option is B) <span>7.0 × 10² newtons.
</span>If Earth attracts a person with a gravitational force of <span><span>7.0 × 10² </span>newtons,
the person attracts Earth with a gravitational force of 7.0 × 10² newtons.</span>