Answer:
- 1100 J heat flows out
Explanation:
dW = - 1600 J (as work is done on the gas)
dU = 500 J
dQ = ?
According to the first law of thermodynamics
dQ = dU + dW
dQ = 500 - 1600
dQ = - 1100 J
As heat is negative so it flows out.
The characteristics of standing waves allows to find the result for the speed of the wave is:
- The speed wave is: v = 10 m / s
The wave is a way of transmitting energy without mass displacement, , in the attachment we can see a diagram of the standing wave.
Each cycle corresponds to half a wavelength, they indicate that the frequency is 2.50 Hz and there are three cycles, so the wavelength is:
L =
λ = 2L/n
λ = 2 6 /3
λ = 4 m
Wave speed is related to wavelength and frequency
v = λ f
v = 4 2.5
v = 10 m / s
In conclusion, using the characteristics of standing waves we can find the result for the speed of the wave is:
- The wave speed is: v = 10 m / s
Learn more here: brainly.com/question/12536719
The answer is D) neutral water reacts with carbon dioxide to form an acid solution
Answer:
Speed of the helium after collision = 246 m/s
Explanation:
Given that
Mass of helium ,m₁ = 4 u
u₁=598 m/s
Mass of oxygen ,m₂ = 32 u
u₂ = 401 m/s
v₂ =445 m/s
Given that initially both are moving in the same direction and lets take they are moving in the right direction.
Speed of the helium after collision = v₁
There is no any external force on the masses that is why the linear momentum will be conserve.
Initial linear momentum = Final linear momentum
P = m v
m₁u₁+m₂u₂ = m₁v₁+m₂v₂
598 x 4 + 32 x 401 = 4 x v₁+ 32 x 445
v₁ = 246 m/s
Speed of the helium after collision = 246 m/s
I believe the correct answer from the choices listed above is option C. The instrument that is <span>best suited for measuring the dimensions of a shoebox would be a ruler. A triple-beam balance is for measuring mass. A volumetric flask is for volume. A caliper is measuring lengths of small objects.</span>