Answer: Colby we both dumb if we need brainly lol
Explanation:
Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.
Answer:
19.3m/s
Explanation:
Use third equation of motion

where v is the velocity at halfway, u is the initial velocity, g is gravity (9.81m/s^2) and h is the height at which you'd want to find the velocity
insert values to get answer
![v^2-0^2=2(9.81m/s^2)(38/2)\\v^2=9.81m/s^2 *38\\v^2=372.78\\v=\sqrt[]{372.78} \\v=19.3m/s](https://tex.z-dn.net/?f=v%5E2-0%5E2%3D2%289.81m%2Fs%5E2%29%2838%2F2%29%5C%5Cv%5E2%3D9.81m%2Fs%5E2%20%2A38%5C%5Cv%5E2%3D372.78%5C%5Cv%3D%5Csqrt%5B%5D%7B372.78%7D%20%5C%5Cv%3D19.3m%2Fs)
Explanation:
1)
A) Bb BB
B) 50%
2)
A) 50%
B) <u> </u><u> </u><u> </u><u> </u><u> </u><u>b</u><u>.</u><u> </u><u> </u><u> </u><u>b</u>
B. Bb. Bb
b. bb. bb
The reason why there is no energy shortage nor will there ever be is because energy is being preserved and conserved and only changes form. It never gets lost or increased.