Answer:
h =12.9 w/m2 k
Explanation:
we know that thermal conductivity of air K at 0 degree celcius = 0.024 w/mk
T_S = 80 Degree celcius
temperature gradient = -43 degree C/mm = - 43*1000 / m
by fourier law


q = 1032 watt/m2
we know that from newton's law
q = h (T_s - T_∞)
1032 = h*(80 - 0)
h =12.9 w/m2 k
Answer:
7.9 x 10^21 pound-force
Explanation:
The average distance between the Earth and sun is 150 trillion meters, or 1.5 x 10^11 meters. The mass of the sun is 1.99 x 10^30 kilograms, while the Earth weighs in at 6.0 x 10^24 kilograms. The gravitational constant is 6.67 x 10^-11 meter^3 / (kilogram - second^2). So the Earth and sun pull on each other with a force equal to 3.52 x 10^22 newtons. The newton is a unit of force equal to a kilogram-meter/second^2. One newton is equal to 0.22 of the rarely used English unit called pound-force, so 3.52 x 10^22 newtons is 7.9 x 10^21 pound-force.
Answer:
First choice
Explanation:
A satellite in orbit around Earth experiences only one force: the gravitational attraction exerted by the Earth on it. This force is labelled with
. In space, there are no other forces acting on the satellite.
The force of gravity acts as centripetal force, "pulling" the satellite towards the centre of its circular orbit. The inertia of the satellite (which has an initial velocity) tends to keep it moving straight, so the combination of these two effects (inertia and force of gravity) results into the circular motion of the satellite.
1.5 / 0.5 = 3 I believe this is the right answer
I think it might be A. I’m sorry if I’m wrong