Answer:
Pressure = 11.38 psi
Force = 13.981 Ibf
Explanation:
Step by step solution is in the attached document.
Answer:
Objective statements.
Explanation:
An objective statement can be defined as a short statement that explicitly states or describes what a person wants exactly or is looking out for in a particular item.
Objective statements are written to “maximize” or “minimize” a specific value associated with the product needs in order to define the goal or aim of the design process.
This ultimately implies that, objective statements are used by various manufacturing industries or companies to explicitly define the minimum or maximum requirements for the production of its goods.
Answer:

Explanation:
Let assume that heating and boiling process occurs under an athmospheric pressure of 101.325 kPa. The heat needed to boil water is:
![Q_{water} = (1.4\,L)\cdot(\frac{1\,m^{3}}{1000\,L} )\cdot (1000\,\frac{kg}{m^{3}} )\cdot [(4.187\,\frac{kJ}{kg\cdot ^{\textdegree}C} )\cdot (100^{\textdegree}C-25^{\textdegree}C)+2257\,\frac{kJ}{kg}]](https://tex.z-dn.net/?f=Q_%7Bwater%7D%20%3D%20%281.4%5C%2CL%29%5Ccdot%28%5Cfrac%7B1%5C%2Cm%5E%7B3%7D%7D%7B1000%5C%2CL%7D%20%29%5Ccdot%20%281000%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%20%29%5Ccdot%20%5B%284.187%5C%2C%5Cfrac%7BkJ%7D%7Bkg%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D%20%29%5Ccdot%20%28100%5E%7B%5Ctextdegree%7DC-25%5E%7B%5Ctextdegree%7DC%29%2B2257%5C%2C%5Cfrac%7BkJ%7D%7Bkg%7D%5D)

The heat liberated by the LP gas is:


A kilogram of LP gas has a minimum combustion power of
. Then, the required mass is:


Answer:
5.1 Personnel Security. ...
5.2 Physical and Environmental Protection. ...
5.3 Production, Input and Output Controls. ...
5.4 Contingency Planning and Disaster Recovery. ...
5.5 System Configuration Management Controls. ...
5.6 Data Integrity / Validation Controls. ...
5.7 Documentation. ...
5.8 Security Awareness and Training.
Answer:
Not possible.
Explanation:
According to second law of thermodynamics, the maximum efficiency any heat engine could achieve is Carnot Efficiency η defined by:

Where
and
are temperature (in Kelvin) of heat source and heatsink respectively
In our case (I will be using K = 273+°C) :

In percentage, this is 14.28% efficiency, which is the <em>maximum</em> theoretical efficiency <em>any</em> heat engine could have while working between -27 and 14 °C temperature. Any claim of more efficient heat engine between these 2 temperature are violates the second law of thermodynamics. Therefore, the claim must be false.