Answer:
A. Interactions between the ions of sodium chloride (solute-solute interactions).
B. Interactions involving dipole-dipole attractions (solvent-solvent interactions).
C. Interactions formed during hydration (solute-solvent interactions).
D. Interactions involving ion-ion attractions (solute-solute interactions).
E. Interactions associated with an exothermic process during the dissolution of sodium chloride (solute-solvent interactions).
F. Interactions between the water molecules (solvent-solvent interactions).
G. Interactions formed between the sodium ions and the oxygen atoms of water molecules (solute-solvent interactions).
Explanation:
The solution process takes place in three distinct steps:
- Step 1 is the <u>separation of solvent molecules.
</u>
- Step 2 entails the <u>separation of solute molecules.</u>
These steps require energy input to break attractive intermolecular forces; therefore, <u>they are endothermic</u>.
- Step 3 refers to the <u>mixing of solvent and solute molecules.</u> This process can be <u>exothermic or endothermic</u>.
If the solute-solvent attraction is stronger than the solvent-solvent attraction and solute-solute attraction, the solution process is favorable, or exothermic (ΔHsoln < 0). If the solute-solvent interaction is weaker than the solvent-solvent and solute-solute interactions, then the solution process is endothermic (ΔHsoln > 0).
In the dissolution of sodium chloride, this process is exothermic.
Answer:
Producing disease-resistant crops
Explanation:
B. is the Right Answer Hope this helps!
Answer:
1. Carbon dioxide, increase of green house gas
2. Stop deforestation, cut down amount of cars on the road (encourage public to take public transport), reduce the amount of time u on the air-conditioning
Answer:
See explanation.
Explanation:
For the ideal gas law (PV = nRT), we can notice that when the temperatures increases, the pressure or the volume must increase.
For the container with constant volume, the pressure will increase. Because density is mass/volume, in this container the density will not change.
For the other container, the pressure must be the same as the external, so it will not change, then the volume must increase. When the volume increases, the density decreases (density = mass/volume), so the pressure doesn't change and the density decreases.
An exothermic reaction is a type of reaction that dissipates heat as the reaction proceeds. This would mean that in a closed system, when a reaction proceeds and is endothermic, the temperature of the solution or the system would increase so as to maintain the equilibrium with the whole system.