1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
4 years ago
8

SB-4 Which one of the following is true about red buoys under the U.S. Aids to Navigation System?

Engineering
1 answer:
stich3 [128]4 years ago
8 0

Question:

1. Some are known as "nun" buoys

2. They are labeled with odd numbers

3. If it is lighted, the light color is green

4. Some are known as "can" buoys

Answer:

The correct option is;

1. Some are known as "nun" buoys

Explanation:

Based on the lateral system, on the starboard side, one can find the red even numbered marks while the odd-numbered, green, marks are located on the port side of a channel such that the buoy numbers increase as a vessel travels upstream.

The red buoys are cones shaped in appearance and have triangular reflective sign markings embossed and they are of different types included in the order of lower water depth

1. NUN buoy

2. Lighted buoy

3. Light

4. Day beacon

Therefore, the correct option is 1. Some are known as "NUN" buoys.

You might be interested in
What the different methods to turn on thyrister and how can a thyrister turned off​
myrzilka [38]

Answer:

forward voltage triggering

temperature triggering

dv/dt triggering

light triggering

gate triggering

Then turning off;

Turn off is accomplished by a "negative voltage" pulse between the gate and cathode terminals

Explanation:

hope it helps

8 0
3 years ago
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
4 years ago
Express the Internal Energy and Entropy as a Function of T and V for a homogeneous fluid. Develop the same relations using the i
DedPeter [7]

Answer:

dU=C_{v} dT+(T(\frac{\beta }{\kappa })  -P)dV

dS=C_{v} \frac{dT}{T} +(\frac{\beta }{\kappa } ) dV

Explanation:

The internal energy is equal to:

dU=C_{v} dT+(T(\frac{\delta P}{\delta T} )_{v} -P)dV

The entropy is equal to:

dS=C_{v} \frac{dT}{T} +(\frac{\delta P}{\delta T} )_{v} dV

If we write the pressure derivative in terms of isothermal compresibility and volume expansivity, we have

\frac{\delta P}{\delta T}=\frac{\beta }{\kappa }

Replacing:

dU=C_{v} dT+(T(\frac{\beta }{\kappa })  -P)dV

dS=C_{v} \frac{dT}{T} +(\frac{\beta }{\kappa } ) dV

4 0
3 years ago
A lake is fed by a polluted stream and a sewage outfall. The stream and sewage wastes have a decay rate coefficient (k) of 0.5/d
joja [24]

Solution :

Given :

k = 0.5 per day

$C_s = 10 \ mg/L \ ; \ \ Q_s= 40 \ m^3/s$

$C_{sw} = 100 \ ppm \ ; \ \ Q_{sw}= 0.5 \ m^3/s$

Volume, V $= 200 \ m^3$

Now, input rate = output rate + KCV ------------- (1)

Input rate  $= Q_s C_s + Q_{sw}C_{sw}$

                $=(40 \times 10) + (0.5\times 100)$

                $= 2 \times 10^5 \ mg/s$

The output rate $= Q_m C_{m}$

                          = ( 40 + 0.5 ) x C x 1000

                          $=40.5 \times 10^3 \ C \ mg/s$

Decay rate = KCV

∴$KCV =\frac{0.5/d \times C \  \times 200 \times 1000}{24 \times 3600}$

            = 1.16 C mg/s

Substituting all values in (1)

$2 \times 10^5 = 40.5 \times 10^3 \ C+ 1.16 C$

C = 4.93 mg/L

4 0
3 years ago
An example of rocket abuse​
Paladinen [302]

what ??????????????????

4 0
3 years ago
Other questions:
  • Q7. A cylindrical rod of 1040 steel originally 15.2 mm (0.60 in.) in diameter is to be cold worked by drawing; the circular cros
    6·1 answer
  • Write down a transfer function of a stable system for which pure proportional feedback could drive the system unstable.
    11·1 answer
  • Plz help me
    12·1 answer
  • A waste treatment pond is 50m long and 25m wide, and has an average depth of 2m.The density of the waste is 75.3 lbm/ft3. Calcul
    12·1 answer
  • Are there specific building code requirements for the installation of specialized water-based fire protection systems?
    10·1 answer
  • Calculate the energy in kJ added to 1 ft3 of water by heating it from 70° to 200°F.
    5·1 answer
  • Horizontal wind turbines have same design for offshore and on shore wind farms. a)-True b)- False
    5·1 answer
  • Name the ferrous metal that most workshop tools are made from??
    12·2 answers
  • 4. Which type of duct undergoes more rigorous testing before it's labeled?
    12·1 answer
  • Why less irrigation facilities in Telangana state give reasons​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!