To solve this problem it is necessary to apply the concepts related to temperature stagnation and adiabatic pressure in a system.
The stagnation temperature can be defined as

Where
T = Static temperature
V = Velocity of Fluid
Specific Heat
Re-arrange to find the static temperature we have that



Now the pressure of helium by using the Adiabatic pressure temperature is

Where,
= Stagnation pressure of the fluid
k = Specific heat ratio
Replacing we have that


Therefore the static temperature of air at given conditions is 72.88K and the static pressure is 0.399Mpa
<em>Note: I took the exactly temperature of 400 ° C the equivalent of 673.15K. The approach given in the 600K statement could be inaccurate.</em>
Answer:
Explanation:
The "Move Over law" varies by state, but generally requires you vacate the adjacent lane (the one you're currently traveling in), or slow down. Some states have specific speed requirements; others require only "safe and prudent" speed.
The sort of parked vehicles that require you to "move over" also vary by state. It would be "safe and prudent" to move over for <em>any</em> vehicle parked on the shoulder, especially if there are people or animals around those vehicles.
Answer:
D
Explanation:
took test failed question D is the right answer
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²