Answer:
convex lens and a concave mirror
Answer:
31.905 ft/s²
Explanation:
Given that
Mass of the pilot, m = 120 lb
Weight of the pilot, w = 119 lbf
Acceleration due to gravity, g = 32.05 ft/s²
Local acceleration of gravity of found by using the relation
Weight in lbf = Mass in lb * (local acceleration/32.174 lbft/s²)
119 = 120 * a/32. 174
119 * 32.174 = 120a
a = 3828.706 / 120
a = 31.905 ft/s²
Therefore, the local acceleration due to gravity at that elevation is 31.905 ft/s²
Least count of the pulse stopwatch is given by

this means each division of the stopwatch will measure 0.1 s of time
After 3 journeys from one end to other we can see that total time that is measured here is shown by the clock as 52nd division
So here total time is given as
Time = (Number of division) (Least count)
now we will have


Answer is C.
Optical microscope involves passing visible light transmitted through or reflected from the sample through a single or multiple lenses to allow a magnified view of the sample.