Answer:
C. lonic bonds involve the transfer of electrons between ions, while
Van der Waals forces involve the attraction of nonpolar molecules.
Explanation:
Just did it
Answer:
Slope = 2 m / 10 m = 1/5
For every 5 m of effort the object will be raised 1 m
W = work done on object = M g h increase in PE of object
E S = W where E is effort and S the distance thru which the effort acts
E S = M g H
E = 100 kg * 9.8 m/s^2 * 2 m / 10 m = 196 kg m / s^2 = 196 N
Check: total work = 2 * 9.8 * 100 = 1960 J
Force Needed = 1960 J / 2 m = 980 Newtons
Mechanical advantage = 980 / 196 = 5 as one would expect since the object is raised 1 m for every 5 m of force input
Reactivity is the ability of matter that allows it to easily chemically combine with other substances.
For Blake:
3 boxes at a distance of 10 meters each, each box weighs 20 N
Work done by Blake = 3 * 10m * 20N
= 600 J
Power = 600 J/ 2 min
= 300 J/min
For Sandra:
4 boxes, 15 N each at a distance of 12 meters each.
Work done by Sandra = 4 * 15 N *12m
= 720 J
Power = 720 J/ 4 min
= 180 J/min
Blake does less work than Sandra.
Blake's power is more than Sandra's.
Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°