1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
3 years ago
7

The corect phase sequence shown

Physics
1 answer:
Feliz [49]3 years ago
3 0

Answer:

Explanation:

gas, liquid, soild

liquid, Gas, solid

Gas, Solid, liquid

You might be interested in
What structural formula represents 4 electrons shared between two atoms?
antiseptic1488 [7]

Sharing of 4 electrons between two atoms results in two double bonds. This can be see in the case of oxygen molecule (O2)

Atomic number of O = 8

Electron configuration of O = 1s²2s²2p⁴

Valence electron configuration: 2s²2p⁴

When 2 O atoms combine they share 4 electrons to form 2 double bonds. In addition, there are two lone pairs on each O atom.

Structural formula:  O=O

4 0
3 years ago
Which of the following has more inertia?? bowling ball , hammer, Tennis ball feather
I am Lyosha [343]
The bowling ball would have the most inertia because it has the most mass. Inertia is the ability to resist a change in motion. So, it sort of makes sense that the more massive an object, the more resistance it has against outside forces. 
Bowling ball would be your answer since it has the most mass.
5 0
3 years ago
A 190 g glider on a horizontal, frictionless air track is attached to a fixed ideal spring with force constant 160 N/m. At the i
laiz [17]

(a) Let <em>x</em> be the maximum elongation of the spring. At this point, the glider would have zero velocity and thus zero kinetic energy. The total work <em>W</em> done by the spring on the glider to get it from the given point (4.00 cm from equilibrium) to <em>x</em> is

<em>W</em> = - (1/2 <em>kx</em> ² - 1/2 <em>k</em> (0.0400 m)²)

(note that <em>x</em> > 4.00 cm, and the restoring force of the spring opposes its elongation, so the total work is negative)

By the work-energy theorem, the total work is equal to the change in the glider's kinetic energy as it moves from 4.00 cm from equilibrium to <em>x</em>, so

<em>W</em> = ∆<em>K</em> = 0 - 1/2 <em>m</em> (0.835 m/s)²

Solve for <em>x</em> :

- (1/2 (160 N/m) <em>x</em> ² - 1/2 (160 N/m) (0.0400 m)²) = -1/2 (0.190 kg) (0.835 m/s)²

==>   <em>x</em> ≈ 0.0493 m ≈ 4.93 cm

(b) The glider attains its maximum speed at the equilibrium point. The work done by the spring as it is stretched away from equilibrium to the 4.00 cm position is

<em>W</em> = - 1/2 <em>k</em> (0.0400 m)²

If <em>v</em> is the glider's maximum speed, then by the work-energy theorem,

<em>W</em> = ∆<em>K</em> = 1/2 <em>m</em> (0.835 m/s)² - 1/2 <em>mv</em> ²

Solve for <em>v</em> :

- 1/2 (160 N/m) (0.0400 m)² = 1/2 (0.190 kg) (0.835 m/s)² - 1/2 (0.190 kg) <em>v</em> ²

==>   <em>v</em> ≈ 1.43 m/s

(c) The angular frequency of the glider's oscillation is

√(<em>k</em>/<em>m</em>) = √((160 N/m) / (0.190 kg)) ≈ 29.0 Hz

3 0
2 years ago
How does the increasing mass effect the force of an object in motion?​
irina [24]

Answer:

<u>According </u><u>to </u><u>second </u><u>law </u><u>of </u><u>motion</u><u>,</u><u>t</u><u>he acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.</u>

<em>So </em><em>simply</em><em>,</em><em> </em><em>it </em><em>can </em><em>be </em><em>affected </em><em>due </em><em>to </em><em>increasing </em><em>force </em><em>as </em><em>there </em><em>is </em><em>close </em><em>relationship </em><em>between </em><em>momentum.</em>

Explanation:

<em>The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.</em>

<em>I </em><em>hope </em><em>it </em><em>was </em><em>helpful </em><em>for </em><em>you </em><em>:</em><em>)</em>

7 0
2 years ago
A horizontal wire is hung from the ceiling of a room by two massless strings. The wire has a length of 0.11 m and a mass of 0.01
AnnZ [28]

Answer:

Explanation:

The magnetic force acting horizontally will deflect the wire by angle φ from the vertical

Let T be the tension

T cosφ = mg

Tsinφ = Magnetic force

Tsinφ = BiL  , where B is magnetic field , i is current and L is length of wire

Dividing

Tanφ = BiL / mg

= .055 x 29 x .11 / .010 x 9.8

= 1.79

φ = 61° .

Tension T = mg / cosφ

= .01 x 9.8 / cos61

= .2 N .

5 0
3 years ago
Other questions:
  • Describe how the total mass of the particles before the reaction occurs compares to the total mass of the particles produced by
    9·1 answer
  • A cyclist rides in a circle with speed 8.1 m/s. What is his centripetal acceleration if the circle has a radius of 27 m? A. 3.3
    9·1 answer
  • As a ball falls freely toward the ground, its total
    9·1 answer
  • A rigid tank of air is cooled (temperature decreased). The volume has to remain constant because it is a rigid tank. The air pre
    8·2 answers
  • A car is stopped at a red light. When the light turns green, it accelerates up
    10·1 answer
  • An object has an acceleration of 6.0 m/s/s. If the net force acting upon this object were tripled , then its new acceleration wo
    7·1 answer
  • Eifhewfiowehfoiwehfoiwe
    12·1 answer
  • Every rock that you find must be or have at one time been a/an​
    15·1 answer
  • An object with a mass of 5 kg is accelerated from rest by a 60 N*s impulse. What is the change in the object's velocity?
    8·1 answer
  • A hiker yells out "Hello!" into a canyon. If the echo of their voice
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!