Answer:
T = 764.41 N
Explanation:
In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:
(1)
m: mass object = 2.3 kg
r: radius of the circular orbit = 0.034 m
v: tangential speed of the object
However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:

You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:

you replace this value of v in the equation (1). Also, you replace the values of r and m:

hence, the tension in the string must be T = Fc = 764.41 N
No, there are not any carbon atoms inside this compound.
The compound is
. This means there are 3 "Ca" atoms and 2 "N" atoms.
- Ca is calcium
- N is nitrogen
Thus, none of the elements in this compound are carbon, meaning there are no carbon atoms. Let me know if you need any clarifications, thanks!
~ Padoru
Answer:
Option 3. The tennis ball began from rest and rolls at a rate of 14.7 m/s safer 1.5 seconds.
Explanation:
To know the the correct answer to the question, it is important that we know the definition of acceleration.
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) /t
Where
a => acceleration
v => final velocity
u => Initial velocity
t => time
With the above information in mind, let us consider the options given in the question above to know which conform to the difinition of acceleration.
For Option 1,
We were told that the tennis ball has the following:
Distance = 4 m
Time = 1.5 s
This talks about the speed and not the acceleration.
Speed = distance / time
For Option 2,
We were only told about the average speed and nothing else.
For Option 3,
We were told that the tennis ball have the following:
Initial velocity (u) = 0 m/s
Final velocity (v) = 14.7 m/s
Time = 1.5 s
This talks about the acceleration.
a = (v – u) /t
For Option 4,
We were only told that the tennis rolls to the right at an average speed. This talks about the average velocity. We need more information like time to justify the acceleration.
From the above illustrations, option 3 gives the correct answer to the question.