Answer:
2.5 m
Explanation:
Weight of billboard worker = 800 N
Number of ropes = 2
Length of scaffold = 4 m
Weight of scaffold = 500 N
Tension in rope = 550 N
The sum of the torques will be

The position of the person will be 2.5 m
Answer:
Yes, they are warm blooded.
because their body temperature is close to that of human about 36.4º to 38ºC (97.5º to 100.4ºF)
Explanation:
The tension on the wire is 52.02 N.
From the question, we have
Density of aluminum = 2700 kg/m3
Area,
A = πd²/4
A = π x (4.6 x 10⁻³)²/4
A = 1.66 x 10⁻⁵ m²
μ = Mass per unit length of the wire
μ = ρA
μ = 2700 kg/m³ x 1.66 x 10⁻⁵ m²
μ = 0.045 kg/m
Tension on the wire = √T/μ
34 = √T/0.045
34² = T/0.045
T = 52.02 N
The tension on the wire is 52.02 N.
Complete question:
The density of aluminum is 2700 kg/m3. If transverse waves propagate at 34 m/s in a 4.6-mm diameter aluminum wire, what is the tension on the wire.
To learn more about tension visit: brainly.com/question/14336853
#SPJ4
Answer:
a) according to Faraday's law
, b) creating a faster movement, placing more turns on coil
Explanation:
a) The voltage is induced in the coil by the relative movement between it and the magnet, therefore according to Faraday's law
E = - d (B A) / dt
In this case, the magnet is involved, so the value of the magnetic field varies with time, since the number of lines that pass through the loop changes with movement.
This voltage creates a current that charges the battery
b) There are several ways to increase the voltage
* creating a faster movement, can be done by the user
* placing more turns on the coil, must be done by the manufacturer
The answer is A. Reactivity
hope this helps