<span>(M G H)=(0.5 x 9.8 x 10) = 49 joules.</span>
The only thing that definitely happens in every such case is:
The container becomes heavier.
Here we apply conservation of linear momentum. The momentum of the truck with cargo and without cargo remains constant. That is,
.
Here
are initial mass and velocity.
are final mass and velocity. Here
and
.
The velocity of the truck be after its cargo is taken off is

The refrigerator's coefficient of performance is 6.
The heat extracted from the cold reservoir Q cold (i.e., inside a refrigerator) divided by the work W required to remove the heat is known as the coefficient of performance, or COP, of a refrigerator (i.e., the work done by the compressor). The required inside temperature and the outside temperature have a significant impact on the COP.
As the inside temperature of the refrigerator decreases, its coefficient of performance decreases. The coefficient of performance (COP) of refrigeration is always more than 1.
The heat produced in the cold compartment, H = 780.0 J
Work done in ideal refrigerator, W = 130.0 J
Refrigerator's coefficient of performance = H/W
= 780/130
= 6
Therefore, the refrigerator's coefficient of performance is 6.
Energy conservation requires the exhaust heat to be = 780 + 130
= 910 J
Learn more about coefficient here:
brainly.com/question/18915846
#SPJ4
Explanation:
Joule (J) is the MKS unit of energy, equal to the force of one Newton acting through one meter.