Answer:
If the mass is doubled the frequency will be multiplied by 4
Answer:
minimum length of runway is needed for take off 243.16 m
Explanation:
Given the data in the question;
mass of glider = 700 kg
Resisting force = 3700 N one one glider
Total resisting force on both glider = 2 × 3700 N = 7400 N
maximum allowed tension = 12000 N
from the image below, as we consider both gliders as a system
Equation force in x-direction
2ma = T -f
a = T-f / 2m
we substitute
a = (12000 - 7400 ) / (2 × 700 )
a = 4600/1400
a = 3.29 m/s²
Now, let Vf be the final speed and Ui = 0 ( as starts from rest )
Vf² = Ui² + 2as
solve for s
Vf² = 0 + 2as
2as = Vf²
s = Vf² / 2a
given that take of speed for the gliders and the plane is 40 m/s
we substitute
s = (40)² / 2×3.29
s = 1600 / 6.58
s = 243.16 m
Therefore, minimum length of runway is needed for take off 243.16 m
Answer:
D.
Explanation:
Red light has wavelengths around 620 to 750 nm.
Answer:
Here is the complete question.
If the magnitude of a positive charge is tripled, what is the ratio of the original value of the electric field at a point to the new value of the electric field at that same point.
a) 1:2
b) 1:3
c)1:6
d)1:9
b) 1:3 is the correct option.
Explanation: