1,000 W = 1 kW
100 W = 0.1 kW
(0.1 kW) x (6 h) = 0.6 kWh <=== energy
(0.6 kWh) x (£0.1359/kWh) = £0.0815 <=== cost of it
To solve this problem it is necessary to apply the concepts related to the Force since Newton's second law, as well as the concept of Electromagnetic Force. The relationship of the two equations will allow us to find the magnetic field through the geometric relations of density and volume.

Where,
B = Magnetic Field
I = Current
L = Length
<em>Note:
is a direct adaptation of the vector relation
</em>
From Newton's second law we know that the relation of Strength and weight is determined as

Where,
m = Mass
g = Gravitational Acceleration
For there to be balance the two forces must be equal therefore

Our values are given as,
Diameter 
Radius 
Magnetic Field 
From the relationship of density another way of expressing mass would be

At the same time the volume ratio for a cylinder (the shape of the wire) would be

Replacing this two expression at our first equation we have that:



Re-arrange to find I


We have for definition that the Density of copper is
, gravity acceleration is
and the values of magnetic field (B) and the radius were previously given, then:


The current is too high to be transported which would make the case not feasible.
Answer:
8.3m/s
Explanation:
Given parameters:
mass of clay ball = 5kg
Speed of clay ball = 25m/s
mass of clay ball at rest = 10kg
speed of clay ball at rest = 0m/s
Unknown:
Velocity after collision = ?
Solution:
Since the balls stick together, this is an inelastic collision:
m1v1 + m2v2 = v(m1 + m2)
5(25) + 10(0) = v (5 + 10)
125 = 15v
v = 8.3m/s
Answer:
Ok, primero pensemos en una situación normal.
La moneda comienza a caer, pero la moneda esta inmersa en una sustancia, el aire. El aire comienza a aplicar una resistencia al movimiento de la moneda, y esta resistencia incremente a medida que la velocidad de la moneda incremente. Llega un punto en el que esta nueva fuerza es igual a la fuerza gravitatoria, y en sentido opuesto, lo que causa que la fuerza neta sea 0, y que la moneda caiga a velocidad constante hasta que esta impacta con el suelo.
Ahora, en este caso tenemos que ignorar los efectos del aire, entonces no hay ninguna fuerza que se oponga a la fuerza gravitatoria, entonces la fuerza neta no cambia a medida que cae (La fuerza neta cambia cuando la moneda impacta el suelo).
También se puede analizar el caso en el que, como la fuerza gravitatoria decrece con el radio al cuadrado, a medida que la moneda cae, la fuerza gravitatoria incrementa. El tema es que en para estas dimensiones, ese cambio en la fuerza gravitacional es imperceptible,